

CONSIGLIO NAZIONALE RICERCHE ISTITUTO DI SCIENZE MARINE

RAPPORTO CROCIERA R/V URANIA CASE3 - 2011-01-29 2011-02-07

 Federico Spagnoli¹, Giuseppe Caccamo¹, Giovanni Bortoluzzi², Patrizia Giordano², Fabio Zaffagnini², Massimo Franchi³, Antonella Stagliano¹, Elisa Ghetti⁴, Tomasa Sbaffi⁴, Eva Turicchia⁵, Chedy Vada⁵,Laura Borgognoni⁵, Claudio Vannini⁶, Franco Lanini⁶

- 1. CNR, Istituto di Scienze Marine, Ancona, Italy
- 2. CNR, Istituto di Scienze Marine, Bologna, Italy
- 3. CNR, Istituto di Scienze Marine, Lesina, Italy
- 4. UNIVPM, Ancona, Italy,
- 5. UNIBO, Bologna, Italy
- 6. RSE, Milano, Italy

ISMAR-CNR Rapporto di Crociera

Ancona, Febbraio 2011

DICHIARAZIONE DI NON RESPONSABILITA'

Molte delle designazioni usate da produttori e venditori per promuovere i loro prodotti sono considerati Marchi Commerciali. Quando tali designazioni appaiono nel Rapporto e ISMAR e' a conoscenza di cio' la designazione e' a lettere capitali. Inoltre, essi sono anche riportati nella tabella degli Acronimi. Nulla in questo documento implica raccomandazioni o dichiarazioni positive o negative sui prodotti presentati e utilizzati.

I dati presentati in questo rapporto sono di proprieta' del CNR e del progetto. Il loro utilizzo non coordinato o autorizzato e' considerato fraudolento.

ISMAR-CNR Catalogazione pubblicazione: ISMAR-CNR Rapporto di Crociera

di F.Spagnoli, G. Bortoluzzi,

Include Riferimenti bibliografici e indici

1. Flussi acqua/sedimento 2. Geochimica 3. Campionamenti fondo mare 4. Morfobatimetria 5. CHIRP 6. Oceanografia e Boe Meteoceanografiche

Abstract -

A summary of methodologies, technical details and ship-board results of the CASE3 geochemical, geophysical, geological and oceanographical survey in the N.Adriatic with R/V Urania is presented.

Sommario -

Vengono presentate le attivita' geochimiche, oceanografiche, geologiche e geofisiche della campagna in N.Adriatico CASE3 con la R/V Urania.

Prodotto da ISMAR-CNR da documento 'camera-ready' degli Autori.

Disponibile nei formati HTML and PDF. Disponibile anche in altri formati, a richiesta. Di seguito il link alla copia del documento (LATEX).

Copyright © 2011 di ISMAR-CNR, Sedi di Ancona e Bologna.

Note di produzione - Il documento e' stato scritto con editor di testo, e composto tipograficamente con il pacchetto LATEX. Lo stesso codice e' stato usato per generare files Postscript e PDF, in un ambiente LINUX, usando software con licenza GNU-GPL.

Contents

1	SOMMARIO DELLA CROCIERA									
2	INTRODUZIONE 2.1 Obiettivi 2.2 Inquadramenti Biogeochimico, Geologico e Oceanografico	8 8 9								
3	MATERIALI E METODI 3.1 Navigazione e Batimetria multifascio 3.2 CTD 3.3 CHIRP SBP 3.4 Camera Bentica automatica 3.5 Campionamento di fondo e trattamento campioni 3.6 ADCP 3.7 ROV 3.8 Cartografia e miscellanea	12 12 12 13 13 13 13 13								
4	RISULTATI PRELIMINARI 4.1 STAZIONI DI CAMPIONAMENTO CON CAMERA BENTICA 4.2 Boe Meteoceanografiche 4.3 Dati CTD 4.4 CHIRP e Batimetria Multifascio	17 17 17 17 17								
5	CONCLUSIONI	17								
6	APPENDICE 6.1 OPERAZIONI A MARE	29 29								

List of Figures

1	Navigazione durante la crociera CASE3
2	Inquadramento del Mare Adriatico
3	R/V Urania
4	Camera bentica automatica RSE/ISMAR
5	Carotiere Acqua/Sedimento SW104 Brevetto ISMAR per fondali a sedimento fine 11
6	ROV G.E.I. Pollux
7	Stazione CB 5C/1, CASE3
8	Stazione CB 8A, CASE3
9	Stazione CB 3A, CASE3
10	Stazione CB 2E, CASE3
11	Stazione CB 18C, CASE3
12	Dati CTD durante la crociera CASE3
13	Area a 'pockmark'? Campagna CASE3
14	Relitto M/n Anni. Campagna CASE3
15	Esempio di dato CHIRP, Campagna CASE3 23
16	Esempio di dato CHIRP, Campagna CASE3

List of Tables

1	Sommario della crociera.													
2	Equipaggio tecnico scientifico													
3	Acronimi di Organizzazioni, Produttori e prodotti													
4	'Offsets' del sistema PDS2000 R/V Urania													
5	'Offsets' del sistema Kongsberg EM-710 R/V Urania.													
6	Operazioni in mare (stazioni bentiche), CASE3 con R/V Urania													
7	Estrusione e descrizione Carota 18C													
8	Estrusione e descrizione Carota 3A													
9	Estrusione e descrizione Carota 8A													
10	Estrusione e descrizione Carota 2E													
11	Estrusione e descrizione Carota 5C_1													
12	Estrusione e descrizione Carota 8A_1													
13	Estrusione e descrizione Carota 2E_2													
14	Estrusione e descrizione Carota 5C_2													
15	Stazioni CTD CASE3 con R/V Urania													
16	Diario delle operazioni													

1. SOMMARIO DELLA CROCIERA

NAVE	R/V Urania				
INIZIO	2011-01-29 PORT: Ancona				
FINE	2011-02-07 PORT: Ancona				
MARE/OCEANO	Adriatico Settentrionale				
LIMITI	NORD: 45.10 SUD: 44.75 OVEST: 12.35 EST: 13.35				
OBIETTIVI	Flussi acqua/sedimento, Oceanografia, Campionamento, Morfoba-				
	timetria, Sismica a riflessione				
COORDINAMENTO	ISMAR-CNR Ancona				
CAPO SPEDIZIONE	Federico Spagnoli				
CONTATTO	F.Spagnoli@ismar.cnr.it				
DISCIPLINE	Geochimica, Oceanografia Fisica, Modelli, multibeam, CHIRP, cam-				
	pionamenti				
LAVORO EFFETTUATO	6 CALATE CAMERE BENTICHE, 78 CALATE CTD, 14 CAROTE				
	ACQUA/SEDIMENTO, ~1300 KM CHIRP SBP E BATIMETRIA				
	MULTIFASCIO				

Table 1: Sommario della crociera.

PARTECIPANTE	ORGANIZZAZIONE	RUOLO	tel & email & www
Federico Spagnoli	ISMAR, Ancona	Capo Spedizione	F.Spagnoli@ismar.cnr.it
Giuseppe Caccamo	ISMAR, Ancona	tecnico	G.Caccamo@ismar.cnr.it
Patrizia Giordano	ISMAR, Bologna	ricercatore	P.Giordano@ismar.cnr.it
Giovanni Bortoluzzi	ISMAR,Bologna	tecnico	G.Bortoluzzi@ismar.cnr.it
Massimo Franchi	ISMAR, Lesina	tecnico	M.Franchi@ismar.cnr.it
Fabio Zaffagnini	ISMAR, Bologna	ricercatore	F.Zaffagnini@bo.ismar.cnr.it
Annamaria Andresini	ISMAR, Ancona	ricercatore	a.andresini@libero.it
Claudio Vannini	RSE	ricercatore	vannini@rse-web.it
Franco Lanini	RSE	tecnico	franco@rse-web.it
Eva Turicchia	UNIBO	studente	turice01@yahoo.com
Laura Borgognoni	UNIBO	studente	laura_1987@hotmail.it
Antonella Stagliano	UNIBO	studente	lella837@hotmail.com
Chedy Vada	UNIBO	studente	chedy.vada@studio.unibo.it
Elisa Ghetti	UNIVPM	studente	elisa.ghetti@alice.it
Tomasa Sbaffi	UNIVPM	studente	tomasa.sbaffi@gmail.com

Table 2: Equipaggio tecnico scientifico

RINGRAZIAMENTI

Siamo grati al comandate e all'equipaggio della R/V Urania, per la professionalita', competenza e dedizione. Si ringraziano anche i tecnici SOPROMAR Alessio Cesari e Andrej Diaconov.

Figure 1: Navigazione generale durante la crociera CASE3. I cerchi pieni sono le stazioni CTD, i quadrati sono i campionamenti di fondo

ACRONYM	DESCRIPTION	URL-email
CNR	Consiglio Nazionale Delle Ricerche	www.cnr.it
ISMAR	Istituto di Scienze Marine	www.ismar.cnr.it
RSE	Ricerca sul Sistema Energetico	www.rse-web.it
PDS-2000	RESON	www.reson.com/sw1738.asp
SBE	Sea Bird Electronics	www.seabird.com
SIPPICAN	Sippican Corp.	www.sippican.com
BENTHOS	Teledyne Benthos	www.benthos.com
SWAN-PRO	Communication Technology	www.comm-tec.com
GMT	Generic Mapping Tool	gmt.soest.hawaii.edu/gmt
MBES	Multibeam Echosounder System	
SBP	Sub Bottom Profiling	
SVP	Sound Velocity Profile	
CTD	Conductivity/Temperature/Depth	
MAW	Modified Atlantic Water	
LSW	Levantine Surface Water	
LIW	Levantine Intermediate Water	
CIW	Cretan Intermediate Water	
CDW	Cretan Deep Water (Involved recently in	
	EMDW. Sometimes referred as CSOW).	
LDW	Levantine Deep Water (Formed in NW Levan-	
	tine Basin).	
EMDW	Eastern Mediterranean Deep Water (Kept for	
	historical reasons).	
EOW	Eastern Mediterranean Overflow Water (Some-	
	times called AIW or tEMDW at the Sicily chan-	
	nel).	
TDW	Tyrrhenian Deep Water	
WMDW	West Mediterranean Deep Water	
GPS-DGPS-RTK	Global Positioning System	samadhi.jpl.nasa.gov
DTM	Digital Terrain Model	en.wikipedia.org

Table 3: Acronimi di Organizzazioni, Produttori e prodotti.

2. INTRODUZIONE

La crociera CASE3, coordinata dall' ISMAR CNR di Ancona, ... La crociera CASE3 e' stata programmata per acquisire dati fisici e biogeochimici sulla colonna d'acqua tramite la ripetizione di transetti 'storici' (Venezia, Adige, Po-Rovigno, Casal Borsetti, Ravenna, Rimini, e altri), e una serie di campionamenti fondo mare e batimetria ad alta risoluzione in zone particolari.

Inoltre, era prevista attivita' di verifica delle due boe E1 e S1.

Di seguito vengono riportate le attivita' a bordo durante la campagna CASE3, includendo anche la descrizione della nave, tecnologie scientifiche e loro utilizzo, assieme a dettagli sulle impostazioni, prestazioni e la presentazione di risultati preliminari.

2.1. Obiettivi

Obiettivo principale della ricerca e' la caratterizzazione biogeochimica e sedimentologica di un'area marina in cui potrebbe esserer in futuro stoccata la CO_2 negli acquiferi profondi e la determinazione dei valori di base naturali dei flussi bentici di CO_2 disciolta, DIC e alcalinita' e di sostanze connesse nonche' lo studio dei processi di diagenesi precoce che originano tali flussi.

Ulteriori obiettivi sono:

- 1 mettere a punto, sulla base delle caratteristiche geologiche e geochimiche di aree selezionate per lo stoccaggio geologico della CO_2 in ambiente marino, una metodologia di monitoraggio attendibile, statisticamente e scientificamente, attraverso l'identificazione e la quantificazione dei rilasci di CO_2 disciolta e del DIC dal fondale, considerando i loro valori di fondo naturali come riferimento;
- 2 valutare le prestazioni funzionali di differenti sistemi di monitoraggio (camere bentiche, incubazioni in laboratorio, microprofilatori, microoptode, ecc.);
- 3 comparare differenti metodologie chimiche per la misura delle concentrazioni di CO₂ disciolta e DIC a e delle altre due specie chimiche che caratterizzano il sistema carbonato (pH, alcalinita'), nelle acque di mare;

Il raggiungimento di tali obiettivi, consentira' di definire e validare un sistema di monitoraggio di 'early warning' in grado di individuare eventuali rilasci di CO₂ dai sedimenti marini, in aree utilizzate per il suo stoccaggio geologico. La campagna CASE3 che si e' svolta dal 29 Gennaio al 7 febbraio 2011 in una zona del Mar Adriatico settentrionale prospiciente la regione romagnola, e' stata finalizzata sia alla misura diretta dei flussi all'interfaccia acqua-sedimento in condizioni invernali, nonche' allo studio dei processi di diagenesi precoce che generano tali flussi, dei seguenti parametri: CO₂ disciolta, DIC, alcalinita', NH₃, NO₂, NO₃, PO₄, Si(OH)₄, O₂, Fe, Mn, al fine di definirne i valori di flusso di fondo naturali, sia alla determinazione dell'origine (biogenica o fossile) della CO₂ disciolta e del DIC, attraverso la misura del rapporto degli isotopi stabili del carbonio nel DIC(δ^{13} C_{DIC}). I flussi bentici sono stati misurati mediante la deposizione sul fondale marino di una camera bentica automatica, per un periodo di circa 8 ore. I campioni di acqua prelevati all'interno della camera bentica in tempi prefissati, sono stati analizzati in parte direttamente a bordo della nave (CO₂ disciolta, alcalinita' e DIC) e, in parte, successivamente in laboratorio (DIC, alcalinita' NH₃, NO₂, NO₃, PO₄, Si(OH)₄, Fe, Mn, Ca, Mg, Cs e δ^{13} C_{DIC}). Durante il periodo di permanenza della camera bentica sul fondale marino, sono stati acquisiti, automaticamente, i valori dei principali parametri chimico-fisici (T, Eh, O2, pH, salinita') dell'acqua incubata nella camera, al fine di seguirne l'evoluzione durante la misura. I processi di diagenesi precoce saranno studiati mediante il prelievo di carote di sedimento a diverse profondita' che sono state estruse direttamente a bordo della nave in atmosfera inerte (N_2) , per la separazione (mediante centrifugazione e filtrazione) delle acque interstiziali dalla fase solida, previa misura del pH e dell'Eh nelle varie frazioni raccolte. Sui campioni di solido centrifugati, saranno analizzati, successivamente in laboratorio, i seguenti parametri: contenuto di acqua, carbonio totale (TC) ed organico (TOC), azoto totale (TN), , granulometria, porosita' e $\delta^{13}C_{POC}$; mentre, sulle acque interstiziali, saranno analizzati: NH₃, NO₂, NO₃, PO4, Si(OH)₄, DIC, alcalinita', Fe, Mn, Ca e Mg.

Sono stati inoltre acquisiti dati di CHIRP SBP e batimetria multifascio ad alta risoluzione per caratterizzare l'area dal punto di vista geologico e ambientale. Durante la campagna sono anche stati acquisiti dati fisici e biogeochimici nella colonna d'acqua mediante calate CTD.

2.2. Inquadramenti Biogeochimico, Geologico e Oceanografico

Come e' noto l'Adriatico settentrionale, soprattutto per effetto dei venti freddi provenienti dal quadrante di NE, e' in inverno una zona di formazione di acqua densa destinata a fluire nell'acqua di fondo del Mediterraneo. A questo processo, climaticamente sensibile, sono legati diversi effetti 'benefici' quali: il rimescolamento della colonna d'acqua e il ripristino dei nutrienti nello strato superficiale, il rinnovo dell'acqua di fondo nelle fosse adriatiche, la cattura per 'solubility pump' di CO_2 atmosferica e sua subduzione nello strato profondo, richiamo di acqua 'nuova' da sud, contributo al trasporto, infine, oltre la sella di Otranto, di sostanze prodottesi nei processi biogeochimici avvenuti nel bacino. Proprio sotto quest'ultimo profilo, il nord Adriatico presenta unaaltra interessante caratteristica: l'alta produzione primaria che si verifica normalmente alla fine dell'inverno (febbraio), prima dell'instaurarsi della stratificazione estiva. Quest'ultima caratteristica fa ipotizzare, almeno nel periodo febbraio- marzo, la presenza di un'efficiente 'biological pump' per la CO_2 che si affiancherebbe cosi' alla sopra menzionata 'solubility pump'. Formazione di acqua densa, alta produzione primaria, zona di piattaforma, sono le tre caratteristiche canoniche che candidano un'area a 'Continental Shelf Pump'.

Stato dell'arte

I processi di dissoluzione e/o precipitazione dei carbonati (Ca²⁺ + 2HCO₃₋ \rightarrow CaCO₃ + CO2(aq) + H₂O) svolgono un ruolo importante sulla chimica del carbonio negli ambienti marini e, a grande scala, nel regolare le concentrazioni della CO₂ atmosferica. Nel tentativo di comprendere le cause delle variazioni nei tassi di accumulo dei carbonati molti sforzi, negli anni passati, sono stati indirizzati ad ottenere stime di produzione primaria assumendo che, al di sopra del lisoclino, tali variazioni fossero attribuibili esclusivamente a variazioni di produttivita' nella colonna d'acqua. Studi recenti sui fondali marini al di sopra del lisoclino (Jahnke & Jahnke, 2004; Emerson & Bender, 1981; Martin & Sayles, 1996) hanno dimostrato che la dissoluzione dei carbonati, negli ambienti marini in cui non si raggiunge la profondita' di compensazione dei carbonati all'interfaccia acqua-sedimento, e' guidata da processi di 'dissoluzione inorganica', ossia sottosaturazione nelle acque interstiziali, dovuta ad uno scambio di soluti con acque di fondo sottosature, e da 'dissoluzione metabolica', guidata da processi metabolici nei sedimenti. Questi ultimi comportano la produzione di CO₂ e altri metaboliti ridotti come NH⁴⁺, Fe²⁺, Mn²⁺ o S²⁻ attraverso la mineralizzazione della sostanza organica (processi diagenetici). Lo studio di questi processi potrebbe quindi migliorare la conoscenza dei fattori che regolano i flussi bentici e il ruolo dei sedimenti come 'sink' o 'source' di CO₂. Negli ultimi anni la misura dei flussi bentici di sostanze disciolte e lo studio dei processi di diagenesi precoce ha assunto un duplice interesse, teorico e applicativo, sia a livello internazionale che nazionale, in particolare per il ciclo del carbonio. L'interesse teorico deriva dalla necessita' di comprendere i processi chimici, fisici e biologici che avvengono nello strato limite di separazione tra il sedimento e la colonna d'acqua e nei primi centimetri del sedimento. La maggior parte delle reazioni che portano al riciclo o al definitivo seppellimento di nutrienti e in particolare del carbonio avvengono, infatti, in questo strato. Questi studi sono quindi fondamentali per la comprensione del ciclo biogeochimico del carbonio negli ambienti acquatici. Numerose sono le unita' operative straniere che svolgono studi avanzati in questa direzione: in primo luogo i ricercatori nordamericani (Boudreau et al., 1998; Hammond et al., 2004, 1996; Hales & Emerson, 1997; Jahnke et al., 1982) e poi, in Europa (Apitz et al., 2008; Epping & Helder, 1997; Gundersen & Jorgensen, 1990; Huettel et al., 1998; Muller et al., 1997; Soetaert et al., 1996). In Italia studi riguardanti la misura dei flussi bentici e dei processi di diagenesi precoce sono stati condotti da (Barbanti et al., 1992, 1995; Bergamini et al., 1997b,a; Bertuzzi et al., 1997; Ciceri et al., 1992; Frascari et al., 1988; Giordani et al., 1992; Giordano et al., 2004; Hammond et al., 1999; Marcaccio et al., 1999; Spagnoli et al., 2008, 2004; Spagnoli, 1994; Spagnoli & Bergamini, 1997; Zago et al., 2000).

Gli studi applicativi nascono dall'esigenza di comprendere e ridurre le alterazioni degli ecosistemi acquatici e dei cambiamenti climatici in conseguenza dell'attivita' antropica. In relazione agli incrementi di CO₂ nell'atmosfera tali studi sono rivolti alla comprensione e quantificazione del ciclo biogeochimico del carbonio nell'ambiente marino e quindi anche nel comparto bentico, che, in seguito ai cambiamenti climatici, sta subendo delle notevoli alterazioni (Barcelos e Ramos et al., 2007; Canfield, 1994; Fabry et al., 2008; Hiscock & Millero, 2006; Hutchins et al., 2007; Jahnke et al., 1997; Levitan et al., 2007; Reimers et al., 1992; Schneider et al., 2007; Tanaka et al., 2007; Tyrrell et al., 2008; Widdicombe & Needham, 2007; Widdicombe & Spicer, 2008). Altri tipi di studi sono rivolti a determinare l'entita' dei flussi bentici di sostanze nutrienti in quei bacini dove l'aumento del carico trofico porta a delle anossie con relative crisi distrofiche, oppure alla determinazione dei flussi bentici di metalli pesanti o altre sostanze di origine antropica su fondali interessati da sversamenti di materiali, come scarti di lavorazioni industriali o fanghi di dragaggio dei porti. Anche questi, infatti, possono influenzare il chimismo della colonna d'acqua, entrare nel ciclo trofico e quindi alterare gli ecosistemi naturali e costituire un pericolo per la salute umana.

Inquadramento geologico

L'Adriatico (Fig.2) e' un mare epicontintale con due configurazioni dei propri margini (Ridente & Trincardi, 2005) (con referenze). La zona Nord (NA) e' circondata dalla penisola italiana a Ovest e dai Balcani a Est, ed e' l'area piu' settentrionale del Mediterraneo. E' caratterizzata da batimetrie basse e bassissime (in media ~ 35 m) che si approffondiscono regolarmente verso S fino alla batimetrica di -120 m, questa viene considerata il confine aperto a S, approssimativamente a N della latitudine 43:20 (Artegiani et al., 1997a; Russo & Artegiani, 1996; Poulain et al., 2001). Altri autori considerano invece essere tale confine al traverso di Rimini o di Ancona.

L'area Centrale e' caratterizzata dalla fossa Meso-Adriatica (MAD), un bacino relitto, profondo ~ 260 m, separato in due depocentri dalla cintura di deformazione Centro-Adriatica (Argnani & Frugoni, 1997) e bordata dalle catene Gallignani e Pelagosa a S e dall'alto strutturale delle Isole Tremiti. Le due depressioni della fossa possono essere riempite dalle acque dense (NadDW) prodotte nel bacino settentrionale.

L'area a Sud (Argnani et al., 2006) e' caratterizzata da una depressione subcircolare, profonda > 1200 m (Fossa Sud Adriatica, SAD), localizzata fra le coste della Puglia, a Ovest, e di Albania, Montenegro e Croazia a Est, e considerata essere la avanfossa della cintura di pieghe e faglie delle catene Albanidi e Dinaridi (De Alteriis, 1995; Argnani et al., 1996; Bertotti et al., 2001).

Inquadramento Oceanografico

Essendo un bacino epicontinentale, idrologia e dinamica del NA sono influenzate dal forzante meteorologico, dalle variazioni termiche e dalle portate fluviali. Studi climatologici (Cushman-Roisin et al. (2001) e referenze) indicano che le situazioni meteorologiche principali in NA includono flussi dai quadranti NO, NE e SE (venti Etesiano e Maestrale, Bora, Scirocco). Bora e Scirocco sono i venti predominanti nell'area e possono causare forti eventi di tempesta. Nonostante il suo limitato volume, il NA riceve circa il 20% di acque dolci di tutto il Mediterraneo (Russo & Artegiani, 1996), principalmente dal fiume Po (portata media ~ 1500 m³/a (Artegiani & Azzolini, 1981; Raicich, 1994), comportando un eccesso di acqua dolce.

Nel tardo autunno, gli intensi processi di raffreddamento e evaporazione, tipicamente associati con eventi di Bora sul NA, creano condizioni per la generazione di acqua densa durante l'inverno (Vibilič & Supič, 2005).

A causa dell'aumento delle portate fluviali e del riscaldamento in tarda primavera e estate, correnti di gradiente sono generate in un sistema di circolazione ciclonico (Zore-Armanda, 1956; Buljan & Zore-Armanda, 1976; Franco et al., 1982; Orlić et al., 1992; Artegiani et al., 1997a,b; Russo & Artegiani, 1996; Hopkins et al., 1999; Poulain & Cushman-Roisin, 2001), consistenti in una corrente che entra a S e fluisce verso NO lungo la costa orientale (corrente Adriatica Orientale, EAC), e una corrente che fluisce a SE lungo la costa italiana e esce a Otranto (Corrente Adriatica Occidentale, WAC). La EAC introduce nel bacino a Sud acque piu' calde e salate, mentre la WAC immette acque piu' dolci verso le regioni a S.

La circolazione generale nel NA e' inoltre estremamente condizionata dai venti. Episodi di Bora possono generare una circolazione transiente a doppia rotazione, consistente in un ciclone a N del delta del Po e un anticiclone a S, in grado di trasportare molto al largo filamenti del pennacchio fluviale (Jeffries & Lee, 2007); una circolazione anticiclonica si sviluppa inoltre lungo la costa Istriana a Sud (Poulain & Cushman-Roisin, 1992, 2001), mentre la Bora forza flussi nella WAC (Book et al., 2007; Ursella et al., 2006).

Il NA e' una delle zone maggiormente produttive dell'intero Mediterraneo. Il tasso di consumo di O_2 dovuto ai processi biogeochimici e' il piu' alto dell'intero Bacino Adriatico, con un massimo che generalmente si concentra attorno al delta del Po (Artegiani et al., 1997b). Questa regione puo' quindi essere considerata zona favorevole alla insorgenza di ipossie. La formazione di strati anossici di fondo in ampie aree del bacino (Degobbis et al., 1993, 2000) puo' causare grossi problemi ecologici come mortalita' massive di animali, defaunazione della popolazione bentonica e riduzione della produttivita' dell'industria della pesca.

La ipossia e' definita comunemente tale quando la concentrazione dell'ossigeno disciolto e' inferiore a 2 ml l^{-1} (equivalenti a 2.8 mg l^{-1}). Tale concentrazione e' il limite di tolleranza per molte specie bentiche (Simunovic et al., 1999; Rabalais et al., 2000; Wu, 2002).

Figure 2: Inquadramento del Mare Adriatico.

Figure 3: R/V Urania.

3. MATERIALI E METODI

La crociera e' stata condotta con la R/V Urania, gestita da SOPROMAR per il CNR, utilizzata per lavori geologici, geofisici, oceanografici e geochimici nel Mar Mediterraneo, Oceano Atlantico, Mar Rosso.

R/V Urania e' equipaggiata con sistemi di posizionamento satellitare DGPS e SEAPATH, scandagli singolo e multi fascio, e sistemi integrati di navigazione e acquisizione dati (ADCP in chiglia, CTD), oltre a campionatori di acqua e sedimento e sistemi di pesca e prelievi biologici. Altri sistemi possono essere aggiunti a palo esterno (CHIRP SBP, scandagli multifascio, etc) oppure trainato (Side Scan Sonar).

3.1. Navigazione e Batimetria multifascio

Il sistema di navigazione impiegato sono stati il PDS-2000 (RESON) con interfacciamento al DGPS (Fugro) e al sistema SEAPATH (Kongsberg), MRU, scandaglio ATLAS-KRUPP DESO-25 e stazione meteo Anderaa. I dati di batimetria multifascio (Kongsberg EM-710, 100kHz, 400 fasci 1x2°, apertura 140°, 3000 m scala) sono stati acquisiti dal software SIS nel formato Kongsberg .all. I profili di SVP sono stati inseriti dalle calate CTD.

La tabella ?? mostra la geometria degli strumenti di acquisizione (SEAPATH) durante la crociera CASE3.

3.2. CTD

I dati CTD sono stati ottenuti con una sonda Sea Bird Mod. 911. La Tabella 15 in Appendice mostra la posizione delle stazioni. Le misure idrologiche, acquisite con il programma Sea Bird SEASAVE, sono state: temperatura, conducibilita' (da cui salinita'), ossigeno, fluorimetria, trasmittanza e 'back-scattering'. I dati sono stati convertiti in formato ASCII e mediati a 0.25 e 0.5 db con il software Sea Bird SBEDataprocess. La elaborazione dei dati e' stata fatta con il pacchetto ODV (Schlitzer, 2002).

3.3. CHIRP SBP

E' stato usato il sistema CHIRP-II di Benthos-Teledyne, con 16 trasduttori in chiglia. I dati sono stati raccolti con il software SWAN-PRO di COMM-TEC, nel formato XTF, e convertiti nel formato SEG-Y per la elaborazione con software ISMAR (G.Stanghellini, comunicazione personale).

POSITION	ACROSS	ALONG	HEIGHT
REF.POINT	0.00	0.00	0.00
DGPS	1.64	14.30	14.18
MBEAM	0.00	14.36	-4.96
MAHRS	0.00	0.0	-3.40
DESO	5.50	-1.85	-3.80
CHIRP	-1.0	11.80	-4.00
A-FRAME	6.5	-6.70	0.0
STERN	0.00	-30.60	0.00
MAGNETOM.	-5.50	-210	0.0
DGPSGRAV	0.0	-4.0	10.0
GRAV	-1.0	-1.0	0.0

Table 4: 'Offsets' del sistema PDS2000. La antenna GPS antenna (posizionamento primario) e' al punto DGPS.

POSITION	ACROSS	ALONG	HEIGHT
REF. POINT	0.00	0.00	0.00
SEAPATH_GPS	-4.039	0.163	-18.211
MRU	-0.341	-1.342	-1.596
MBEAM_TX	0.0936	10.2964	5.0623
MBEAM_RX	-0.0031	11.0144	5.0600
SEALEVEL	0	0	-0.0875

Table 5: 'Offsets' del sistema Kongsberg EM710. La antenna GPS (sistema di posizionamento primario) e' localizzata al punto SEAPATH_GPS.

3.4. Camera Bentica automatica

E' stata usata la camera Bentica Automatica RSE-ISMAR (vedi fig. 4).

La camera e' stata deposta sul fondo, nelle ore di luce, con il portale oceanografico di dritta della R/V *Urania*, e segnalata con gavitelli flottanti su una boa di spinta. Al termine del periodo, la nave si e' avvicinata, ha agganciato i gavitelli, si e' portata sulla verticale e la camera e' stata recuperata.

3.5. Campionamento di fondo e trattamento campioni

Il fondo mare e' stato campionato nelle aree a sedimentazione fine e finissima con il carotiere acqua/sedimento a gravita' SW-104 (Fig.5), in grado di campionare sezioni (104mm) di circa 1m di sedimento con il 'top' indisturbato.

3.6. ADCP

E' stato utilizzato il sistema in chiglia Teledyne RDI, modello Broadband 300Khz; i dati sono stati acquisiti col pacchetto VMDAS.

3.7. ROV

E' stato utilizzato il ROV POLLUX della societa' G.E.I. (Fig. 6).

3.8. Cartografia e miscellanea

Si sono scelti il *datum* WGS84 e la proiezione UTM, zona 33, per navigazione e acquisizione dati. L'ora e' stata impostata a UTC. Mappe e immagini batimetriche sono state prodotte dal software GMT Wessel & Smith (1998). I dati multifascio sono stati processati a bordo con il software MB-System e GMT. Materiale iconografico e' stato ottenuto con fotocamere e videocamere digitali.

Camera Bentica

Figure 4: Camera bentica automatica RSE/ISMAR.

Carotatore SW_104

Figure 5: Carotiere Acqua/Sedimento SW104 Brevetto ISMAR per fondali a sedimento fine.

ROV Pollux III

Figure 6: ROV G.E.I. Pollux.

4. RISULTATI PRELIMINARI

4.1. STAZIONI DI CAMPIONAMENTO CON CAMERA BENTICA

La Tabella 6 mostra i dati di posizionamento dei campioni di fondo e di acqua e del posizionamento della camera bentica. Le figure 7, 8, 9, 10 e 11 mostrano i dati di posizionamento delle principali operazioni effettuate nelle stazioni di deposizione delle camere bentiche. In Appendice le tabelle 7, 8, 9, 10, 11, 12, 13, 14 e **??** mostrano i dati relativi alle estrusioni e alla descrizione del sedimento.

I campioni verranno utilizzati per analisi geochimiche e radiochimiche.

4.2. Boe Meteoceanografiche

Sono state verificate le condizioni di galleggiabilita' e copertura di materiale organico delle due boe, assieme alla funzionalita' dei fanali luminosi a codice FI(5)20s e dei miragli radarabili. Nei pressi delle due boe sono stati fatti campionamenti con CTD a fini di calibrazione dei sensori di bordo.

4.3. Dati CTD

La figura 12 mostra l'insieme dei dati raccolti, mentre la tabella 15 mostra i dati di posizionamento.

4.4. CHIRP e Batimetria Multifascio

Durante la campagna sono stati raccolti dati batimetrici multifascio, in particolare nelle aree di campionamento intensivo e deposizione della camera bentica, lungo le linee di acquisizione CHIRP e in zone particolari in cui si e' insistito per ottenere coperture e risoluzioni piu' accurate (alcune delle quali individuate nei transiti). Esempi di queste ultime sono visibili nelle figure 13 e 14. Esempi di acquisizione CHIRP sono visibili nelle Figure 15 e 16. Le elaborazioni CHIRP e Multibeam sono state fatte con i due pacchetti Seismic Unix Cohen & Stockwell, Jr. (2000) e MB-Syetem **?**.

5. CONCLUSIONI

Durante i 10 giorni di campagna sono stati ottenuti:

- 6 calate di camera bentica
- 14 carote acqua/sedimento
- 78 calate CTD lungo transetti del Nord Adriatico, dal Delta del Po a Cattolica
- verifica delle boe S1 ed E1
- campionamenti del fondo mare
- dati di batimetria e CHIRP ad alta risoluzione

L'analisi dei dati e' in corso e continuera' per i prossimi mesi. Non ci sono problemi da riportare a persone, cose o all'ambiente.

Figure 8: Stazione CB 8A, crociera CASE3.

Figure 9: Stazione CB 3A, crociera CASE3.

Figure 10: Stazione CB 2E, crociera CASE3.

Figure 11: Stazione CB 18C, crociera CASE3.

CRUISE CASE3 R/V URANIA CTD DATA SBE911 Plus

DATE START: 2011-01-29

DATE END: 2011-02-07

Figure 13: Area a 'pockmark'? Campagna CASE3.

Figure 14: Relitto M/n Anni Campagna CASE3.

R/V URANIA CASE3 CHIRP Line tmp SHOTS 1265-, sugain panel=0 scale=1 tpow=1.1

Figure 15: Esempio di dato CHIRP (Relitto M/n ANNI), Campagna CASE3.

Figure 16: Esempio di dato CHIRP, Campagna CASE3.

References

- Apitz, S., Bell, E., Breuer, E., Damgaard, L., Gilbert, F., Glud, R., Hall, P., Kershaw, P., Lansard, B., Nickell, L., Parker, R., Rabouille, C., Shimmield, G., Solan, M., Soltwedel, T., Spagnoli, F., Stahl, H., Tengberg, A., Waltpersdorf, E., & Witte, U., 2008. Integrating new technologies for the study of benthic ecosystem response to human activity: towards a Coastal Ocean Benthic Observatory (COBO), Atti Assoc. It. Oceanol. Limnol., 19, 73-78.
- Argnani, A. & Frugoni, F., 1997. Foreland deformation in the central adriatic and its bearing on the evolution of the northern apennines, Ann. Geophys., 40(3), 77-780.
- Argnani, A., Bonazzi, C., Evangelisti, D., Favali, P., Frugoni, F., Gasperini, M., Ligi, M., Marani, M., G., & Mele, G., 1996. Tettonica dell'Adriatico meridionale, Mem. Soc. Geol. It., 51, 227-237.
- Argnani, A., Rovere, M., & Bonazzi, C., 2006. Tectonics and large-scale mass wasting along the slope of the southern adriatic basin, Geophysical Research Abstracts, 8, 07261.
- Artegiani, A. & Azzolini, R., 1981. Influence of the Po floods on the western Adriatic coastal water up to Ancona and beyond, Rapp. Comm. int. Mer Medit., 27(6), 115-119.
- Artegiani, A., Bregant, D., Paschini, E., Pinardi, N., Raicich, F., & Russo, A., 1997a. The Adriatic Sea general circulation. Part I: Air-sea interactions and water mass structure, J. Phys. Oceanogr., 27(8), 1492-1514.
- Artegiani, A., Bregant, D., Paschini, E., Pinardi, N., Raicich, F., & Russo, A., 1997b. The Adriatic Sea general circulation. Part II: Baroclinic circulation structure, J. Phys. Oceanogr., 27(8), 1515-1532.
- Barbanti, A., Ceccherelli, V. U., Frascari, F., Reggiani, G., & Rosso, G., 1992. Nutrient regeneration processes in bottom sediments in a Po Delta Lagoon (Italy) and the role of bioturbation in determining the fluxes at the sediment water interface, Hydrobiologia, 228, 1-21.
- Barbanti, A., Bergamini, M., Frascari, F., Miserocchi, S., Ratta, M., & Rosso, G., 1995. Diagenetic processes and nutrient fluxes at the sediment-water interface, northern Adriatic Sea, Italy, Marine and Freshwater Research, 46, 55–6, doi:10.1071/MF9950055.
- Barcelos e Ramos, J., Biswas, H., Schulz, K., LaRoche, J., & Riebesell, U., 2007. Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium, Global Biogeochemical Cycles, 21, doi:10.1029/2006GB002898.
- Bergamini, M., Frascari, F., Marcaccio, M., Matteucci, G., & Spagnoli, F., 1997a. Processi diagenetici. Relazione finale per il progetto PRISMA I, sotto progetto 'Flussi da e verso i fondali', Rapporto, Istituto di Geologia Marina - CNR, Bologna, 9 pp.
- Bergamini, M., Frascari, F., Marcaccio, M., Matteucci, G., & Spagnoli, F., 1997b. Flussi bentici. Relazione finale per il progetto PRISMA I, sotto progetto 'Flussi da e verso i fondali', Rapporto, Istituto di Geologia Marina - CNR, Bologna, 7 pp.
- Bertotti, G., Picotti, V., Chilovi, C., Fantoni, R., Merlini, S., & Mosconi, A., 2001. Neogene to Quaternary sedimentary basins in the south Adriatic (Central Mediterranean):Foredeeps and lithospheric buckling, Tectonics, pp. 771-787.
- Bertuzzi, A., Faganeli, J., Welker, C., & Brambati, A., 1997. Benthic fluxes of dissolved inorganic carbon, nutrients and oxygen in the Gulf of Trieste (Northern Adriatic), Water, Air, Soil Pollution, 99(1-4), 305-314, DOI: 10.1007/BF02406870.
- Book, J. M., Signell, R. P., & Perkins, H., 2007. Measurements of storm and nonstorm circulation in the northern Adriatic: October 2002 Through April 2003, J. Geophys. Res., 112, C11-S92.
- Boudreau, B. P., Mucci, A., Sundby, B., Luther, G. W., & Silvergert, N., 1998. Comparative diagenesis at three sites on the Canadian continental margin, J. Mar. Res., 56, 1259-1284.
- Buljan, M. & Zore-Armanda, M., 1976. Oceanographical properties of the Adriatic Sea, Oceanogr. Mar. Biol. Ann. Rev., 14, 11-98. Canfield, D., 1994. Factors influencing organic carbon preservation in marine sediments, Chem. Geol., 114, 315-329.
- Ciceri, G., Maran, S., Martinotti, W., & Queirazza, G., 1992. Geochemical cycling of heavy metals in marine coastal area: benthic flux determination from pore water profiles and in situ measurements using benthic chamber, Hydrobiologia, 235-236(1), 501-517, DOI: 10.1007/BF00026238.
- Cohen, J. & Stockwell, Jr., J. W., 2000. CWP/SU: Seismic Unix Release 39: a free package for seismic research and processing, Center for Wave Phenomena, Colorado School of Mines, www.cwp.mines.edu/cwpcodes/.
- Cushman-Roisin, B., Gačič, Poulain, P. M., & Artegiani, A., 2001. Physical Oceanography of the Adriatic Sea: Past, Present and Future, Kluwer Acad., Norwell,
- De Alteriis, G., 1995. Different foreland basins in italy: examples from the central and southern adriatic sea, Tectonophysics, 252, 349-373.
- Degobbis, D., Travizi, A., & Jaklin, A., 1993. Meccanismi di formazione di strati di fondo ipossici e anossici nel bacino dell'Alto Adriatico settentrionale e reazioni delle comunita'À bentoniche, in Ipossie e anossie di fondali marini. L'Alto Adriatico e il Golfo di Trieste, eds Orel, G., Umani, S. F., & Aleffi, F., Regione Autonoma Friuli-venezia Giulia.
- Degobbis, D., Precali, R., Ivancic, I. I., Smodlaka, N., Fuks, D., & Kveder, S., 2000. Long-term changes in the northern Adriatic ecosystem related to anthropogenic eutrophication, Int. J. Environment and Pollution, 13(1-6), 495-533.
- Emerson, S. & Bender, M., 1981. Carbon fluxes at the sediment-water interface of the deep-sea: calcium carbonate preservation, J. Mar. Res., 39, 139-162.
- Epping, E. & Helder, W., 1997. Oxygen budgets calculated fromin situ oxygen microprofiles for Northern Adriatic sediments, Cont. Shelf Res., 17(14), 1737-1764, doi:10.1016/S0278-4343(97)00039-3.
- Fabry, V., Seibel, B., Feely, R., & Orr, J., 2008. Impacts of ocean acidification on marine fauna and ecosystem processes, ICES Journal of Marine Science, 65, 414–432.
- Franco, P., Jeftić, L., Malanotte Rizzoli, P., Michelato, A., & Orlić, M., 1982. Descriptive model of the northern Adriatic, Oceanol. Acta, 5(3), 379-389.
- Frascari, F., Poletti, R., & Rosso, G., 1988. Misure di flussi bentonici di sostanze nutrienti nella Sacca di Goro, Atti A. I. O. L., 8, 397-409.
- Giordani, P., Hammond, D., Berelson, W., Poletti, R., Montanari, G., Milandri, A., Frignani, M., Langone, L., Ravaioli, M., & Rabbi, E., 1992. Benthic fluxes and nutrient budgets for sediments in the Northern Adriatic Sea: burial and recycling efficiencies, Sci. Total Environ., (Suppl.), 251–269.
- Giordano, P., Spagnoli, F., Marcaccio, M., Marini, M., F., F. F., Modica, A., & Rivas, G., 2004. Il Mar Piccolo di Taranto: osservazioni preliminari sul ciclo dei nutrienti all'interfaccia acqua - sedimento, Atti della Assoc. It. Oceanol. Limnol., 17, 59-70.
- Gundersen, J. & Jorgensen, B., 1990. Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor, Nature, 345, 604-607.

- Hales, B. & Emerson, S., 1997. Evidence in support of first-order dissolution kinetics of calcite in seawater, *Earth Planet. Sci. Lett.*, 148, 317–327.
- Hammond, D., McManus, J., Berelson, W., Kilgore, T., & Pope, R., 1996. Early diagenesis of organic carbon in the equatorial Pacific: Rates and kinetics, *Deep-Sea Research*, 43, 136–1412.
- Hammond, D., Giordani, P., Berelson, W., & Poletti, R., 1999. Diagenesis of carbon and nutrients in sediments of the Northern Adriatic Sea, *Mar. Chem.*, **66**, 53–79.
- Hammond, D., Cummins, K., McManus, J., Berelson, W., Smith, G., & Spagnoli, F., 2004. A Comparison of Method for Benthic Flux Measurement Along the California Margin, *Limnology and Oceanography: Methods*, 2, 146–159.
- Hiscock, W. & Millero, F., 2006. Alkalinity of the anoxic waters in the Western Black Sea, *Deep-Sea Research II*, **53**((17-19)), 1787–1801.
- Hopkins, T. S., Kinder, C., Artegiani, A., & Pariante, R., 1999. A discussion of the northern Adriatic circulation and flushing as determined from the ELNA hydrography, in The Adriatic Sea, in *Ecosystem Report*, vol. 32, pp. 85–106, ed. et al., T. S. H., European Commission, Brussels, Belgium, EUR 18834.
- Huettel, M., Ziebis, W., Forster, S., & Luther III, G., 1998. Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments, *Geochim. Cosmochim. Acta*, **62**, 613–631.
- Hutchins, D., Fu, F.-X., Zhang, Y., Warner, M., Feng, Y., Portune, K., Bernhardt, P., & Mulholland, M., 2007. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry, *Limnology and Oceanography*, 52, 1293–1304.
- Jahnke, R. & Jahnke, D., 2004. Calcium carbonate dissolution in deep sea sediments: Reconciling microelectrode, pore water and benthic flux chamber results, *Geochim. Cosmochim. Acta*, **68**, 47–59.
- Jahnke, R., Heggie, D., Emerson, S., & Grundmanis, V., 1982. Pore waters of the central Pacific Ocean: Nutrient results, *Earth Planet. Sci. Lett.*, **61**, 233–256.
- Jahnke, R., Craven, D., McCorkle, D., & Reimers, C., 1997. Ca CO3 dissolution in California continental margin sediments: the influence of organic matter mineralization, *Geochim. Cosmochim. Acta*, **61**, 3587–3604.
- Jeffries, M. A. & Lee, C. M., 2007. A climatology of the northern Adriatic Sea's response to bora and river forcing, *J. Geophys. Res.*, **112**, C03–S02.
- Levitan, O., Rosenberg, G., Setlik, I., Setlikova, E., Grigel, J., Klepetar, J., Prasil, O., & Berman-Frank, I., 2007. Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium, *Global Change Biology*, **13**, 531–538.
- Marcaccio, M., Bergamini, M., Frascari, F., Matteucci, G., & Spagnoli, F., 1999. Diagenesi precoce e mobilit degli elementi contaminanti nei sedimenti del Mare Adriatico, in Atti del 2 Forum Italiano di Scienze della Terra, Geoitalia 1999, pp. 173–175, 20-23 settembre 1999. Bellaria.
- Martin, W. & Sayles, F., 1996. CaCO3 dissolution in sediments of the Ceara Rise, western equatorial Atlantic, *Geochim. Cosmochim.* Acta, **60**(2), 243–263.
- Muller, B., Wehrli, B., Power, M., & Van Der Meer, J., 1997. Structure and activity of microbial communities in sediments, *Chimia*, **51**(12), 878–883.
- Orlić, M., Gačić, M., & Violette, P. L., 1992. The currents and circulation of the Adriatic Sea, Oceanol. Acta, 15(2), 109-124.
- Poulain, P. M. & Cushman-Roisin, B., 1992. Circulation, in *Physical oceanography of the Adriatic Sea*, pp. 67–109, ed. et al., B. C.-R., Kluwer Academic Publishers, Dordrecht, Netherlands.
- Poulain, P. M. & Cushman-Roisin, B., 2001. Circulation, in *Physical oceanography of the Adriatic Sea*, pp. 67–109, eds Cushman-Roisin, B., Gacic, M., Poulain, P. M., & Artegiani, A., Kluwer Academic Publishers, Dordrecht, Netherlands.
- Poulain, P. M., Kourafalou, V. H., & Cushman-Roisin, B., 2001. Northern Adriatic Sea, in *Physical oceanography of the Adriatic Sea*, pp. 143–165, eds Cushman-Roisin, B., Gacic, M., Poulain, P. M., & Artegiani, A., Kluwer Academic Publishers, Dordrecht, Netherlands.
- Rabalais, N. N., Turner, R. E., Justic, D., Dortch, Q., & Wiseman, W. J., 2000. Integrated Assessment of Hypoxia in the Northern Gulf of Mexico, vol. 15 of Coastal Ocean Program Decision Analysis Series, chap. Topic 1: Report for the Integrated Assessment of Hypoxia in the Gulf of Mexico, pp. 1–167, NOAA, Coastal Ocean Program, Silver Spring, MD.
- Raicich, F., 1994. Note on the flow rates of the Adriatic rivers, Tech.report, CNR. Ist. Sper. Talassografico, Trieste, Italy.
- Reimers, C., Jahnke, R., & McCorkle, D., 1992. Carbon fluxes and burial rates over the continental slope and rise off central California with implications for the global carbon cycle, *Global Biogeochemical Cycles*, **6**, 199–224.
- Ridente, D. & Trincardi, F., 2005. Pleistocene 'muddy' forced-regression deposits on the Adriatic shelf: A comparison with prodelta deposits of the late Holocene highstand mud wedge, *Mar. Geol.*, **222-223**, 213–233.
- Russo, A. & Artegiani, A., 1996. Adriatic Sea hydrography, Sci. Mar., 60(Suppl. 2), 33-43.
- Schlitzer, R., 2002. Ocean Data View, http://www.awi-bremerhaven.de/GEO/ODV.
- Schneider, S., Semenov, S., Patwardhan, A., Burton, I., Magadza, C., Oppenheimer, M., Pittock, A., Rahman, A., Smith, J., & Suarez, A., 2007. Assessing key vulnerability and the risk from climate change, in *Climate Change 2007: Impacts, Adaptation* and vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 779–810, Cambridge University Press.
- Simunovic, A., Piccinetti, C., & Zore-Armanda, M., 1999. Kill of benthic organisms as a response to anoxic state in the northern adriatic (a critical review), *Acta Adriat.*, **40**(1), 37–47.
- Soetaert, K., Herman, P., & Middelburg, J., 1996. A model of early diagenetic processes from the shelf to abyssal depths, *Geochim. Cosmochim. Acta*, **60**, 1019–1040.
- Spagnoli, F., 1994. Diagenesi precoce e processi di scambio tra acqua e sedimento in condizione di quiete e di risospensione di un'area marina a sud del delta del Po, Ph.D. thesis, Universit degli Studi di Trieste, Tesi di Dottorato di Ricerca in Scienze Ambientali (Oceanografia Geologica e risorse), V ciclo.
- Spagnoli, F. & Bergamini, M., 1997. Water-solid exchanges of nutrients and trace elements during early diagenesis and resuspension of anoxic shelf sediments, *Water, Air and Soil pollution*, 99, 541–556.
- Spagnoli, F., Bartholini, G., Marini, M., & Giordano, P., 2004. Biogeochemical processes in sediments of the Manfredonia Gulf (Southern Adriatic Sea): early diagenesis of carbon and nutrient and benthic exchange, *Biogeosciences Discussions*, 1, 803–823.
- Spagnoli, F., Bartholini, G., Dinelli, E., & Giordano, P., 2008. Geochemistry and particles size of surface sediments of Gulf of Manfredonia (Southern Adriatic Sea), *Estuarine Coastal and Shelf Science*, 80, 21–30.

Tanaka, T., Thingstad, T., Lovdal, T., Grossart, H.-P., Larsen, A., Schulz, K., & Riebesell, U., 2007. Availability of phosphate for phytoplankton and bacteria and of labile organic carbon for bacteria at different pCO2 levels in mesocosm study, *Biogeoscienes*, *Discuss.*, 4, 3937–3960.

Tyrrell, T., Schneider, B., Charalampopoulou, A., & Riebesell, U., 2008. Coccolithophores and calcite saturation state in the Baltic and Black Seas, *Biogeosciences*, **5**, 485–494.

Ursella, L., Poulain, P. L., & Signell, R. P., 2006. Surface drifter derived circulation in the northern and middle adriatic sea: Response to wind regime and season, *J. Geophys. Res.*, **111**, C03–S04.

Vibilič, I. & Supič, N., 2005. Dense water generation on a shelf: the case of the Adriatic Sea, Ocean. Dynam., 55, 403-415.

Wessel, P. & Smith, W. H. F., 1998. New, improved version of generic mapping tools released, *EOS Trans. Amer. Geophys. U.*, **79**(47), 579.

Widdicombe, S. & Needham, H., 2007. Impact of CO2 induced seawater acidification on the burrowing activity of Nereis virens (Sars 1835) and sediment nutrient flux, *Marine Ecology- Progress Series*, **341**, 111–122.

Widdicombe, S. & Spicer, J., 2008. Predicting the impact of ocean acidification on benthic biodiversity: What can animal physiology tell us?, J. Exp. Mar. Biol. Ecol., 366, 187–197.

Wu, R. S. S., 2002. Hypoxia: from molecular responses to ecosystem responses, Marine Pollution Bulletin, 45, 35-45.

Zago, C., Capodaglio, G., Ceradini, S., Ciceri, G., Abelmoschi, L., Soggia, F., Cescon, P., & Scarponi, G., 2000. Benthic fluxes of cadmium, lead, copper and nitrogen species in the northern Adriatic Sea in front of the River Po outflow, Italy, *Sci. Total Environ.*, 246, 121–137.

Zore-Armanda, M., 1956. On gradient currents in the Adriatic Sea, Acta Adriat., 8(6), 1-38.

6. APPENDICE

6.1. OPERAZIONI A MARE

Table 6: Operazioni in mare (stazioni bentiche), CASE3 con R/V Urania.

LON, LAT	DATA, ORA	EST, NORD	SIGLA
ddmm.xxx	UTC	UTM33	
12.4630331 44.7421774	2011-01-30 06:42:00	299152.83 4957441.30	18C_BC_ATSEA
12.4630143 44.7421959	2011-01-30 06:43:06	299151.40 4957443.40	18C_BC_RELEASE
12.4629516 44.7421525	2011-01-30 06:43:19	299146.29 4957438.73	18C BC RELEASE TRUE
12.4637577 44.7404437	2011-01-30 07:21:45	299204.19 4957246.93	18C NISKIN BOTTOM
12.4636691 44.7404830	2011-01-30 08:05:22	299197.31 4957251.51	18C SW104-I BOTTOM
12.4638578 44.7404479	2011-01-30 08:10:19	299212.13 4957247.15	18C-SW104-II BOTTOM
12.4644728 44.7401895	2011-01-30 09:20:10	299259.92 4957216.92	18C-SW104-III BOTTOM
12.4657218 44.7407757	2011-01-30 12:04:23	299360.84 4957278.96	18C HYDROLAB ATSEA
12.4647500 44.7402833	2011-01-30 12:16:00	299282.19 4957226.66	18C GRAB BOTTOM
12.4640756 44.7401551	2011-01-30 12:23:18	299228.36 4957214.08	18C HYDROLAB BOTTOM
12 4638004 44 7400463	2011-01-30 12:25:02	299206 19 4957202 68	18C HYDROLAB ONBOARD
12 4630243 44 7422994	2011-01-30 15:59:04	299152 55 4957454 87	18C BC RECOVERY
12 4623699 44 7424016	2011-01-30 16:01:53	299101 10 4957467 84	18C BC ONBOARD
12.4581667 44.7435000	2011-01-30 16:23:52	298772.15 4957600.25	18C CTD-09 ATSEA
12 5700675 44 8031199	2011-01-30 17:28:28	307828 93 4963952 32	18C CTD10
12 5712964 44 8040118	2011-01-30 17:32:35	307929 08 4964048 49	18C
12 5714079 44 8041964	2011-01-30 17:35:44	307938 51 4964068 73	180
12 6613724 44 3177397	2011-01-31 05:55:01	313504 82 4909824 28	2E
12 6613593 44 3177578	2011-01-31 05:55:38	313503 83 4909826 32	2E CTD
12 6614077 44 3177905	2011-01-31 05:56:16	313507 79 4909829 85	2E CTD
12 6611667 44 3178333	2011-01-31 05:57:06	313488 71 4909835 15	2E CTD-23 ATSEA
12 6615237 44 3178874	2011-01-31 05:58:19	313517 35 4909840 34	2E CTD
12.6615306 44 3178974	2011-01-31 05:58:54	313517 93 4909841 44	2E CTD
12 6616162 44 3180331	2011-01-31 06:12:33	313525 19 4909856 32	2E NISKIN
12 6610118 44 3180258	2011-01-31 06:29:36	313476 97 4909856 88	2E BC ATSEA
12 6607149 44 3178174	2011-01-31 06:35:43	313452.63.4909834.41	2E BC RELEASE
12 6589515 44 3183475	2011-01-31 06:38:34	313313 69 4909897 31	2E NISKIN ATSEA
12.6585644 44 3185365	2011-01-31 06:40:00	313283 42 4909919 18	2E NISKIN
12 6585874 44 3186126	2011-01-31-06:41:00	313285 49 4909927 58	2E NISKIN
12 6637741 44 3172177	2011-01-31 07:54:20	313694 69 4909760 84	2E SW
12 6637343 44 3171148	2011-01-31 07:55:32	313691 19 4909749 50	2E_SW
12 6636501 44 3170304	2011-01-31 07:56:48	313684 21 4909740 32	2E_SW104-I BOTTOM
12.6621834 44 3169903	2011-01-31 08:45:05	313567 12 4909739 20	2E SW104-II BOTTOM
12 6633038 44 3170520	2011-01-31 09:46:55	313656 66 4909743 50	2E HYDROLAB ATSEA
12.6634657 44 3169332	2011-01-31 09:47:58	313669 20 4909729 94	2E HYDROLAB BOTTOM
12.6657362.44.3159179	2011-01-31 10:15:56	313847 05 4909612 00	2E HYDROLAB ONBOARD
12 6617114 44 3170701	2011-01-31 15:11:19	313529 73 4909749 14	2E GRAB BOTTOM
12 6605279 44 3179770	2011-01-31 15:54:10	313438 22 4909852 56	2E BC RECOVERY
12.6606207 44 3179400	2011-01-31 15:54:32	313445 51 4909848 24	2E BC RECOVERY TRUE
12 6603793 44 3181770	2011-01-31 15:56:43	313427 01 4909875 12	2E BC ONBOARD
12 8768333 44 1083333	2011-02-01 05:01:30	330085 76 4886097 01	2E CTD-27 ATSEA?
12.8925000 44.0850000	2011-02-01 18:01:59	331273.20 4883473 09	2E CTD-28 ATSEA?
13.0351667 44.1831667	2011-02-01 19:21:07	342955.75 4894094 18	2E CTD-29 ATSEA?
12.6613333 44 3175000	2011-02-05 13.20.27	313500.94 4909797 75	2E CTD-74 ATSEA SW104-III
12.6620390 44 3174290	2011-02-05 13:20:27	313556.99 4909788 26	2E SW104-III BOTTOM
12.8903687 44 1343967	2011-02-01 06:30:00	331243.24 4888964 07	5C/1 ROV ATSEA
12.8902966 44 1343535	2011-02-01 06:35:20	331237 35 4888959 42	5C/1 BC RELEASE

12.8903619 44.1343928	2011-02-01 06:35:37	331242.68 4888963.65	5C/1_BC_RELEASE_TRUE
12.8903535 44.1343868	2011-02-01 06:40:00	331241.99 4888963.01	5C/1_ROV_RECOVERY
12.8935141 44.1338958	2011-02-01 07:07:34	331493.43 4888901.99	5C/1_NISKIN-I_ATSEA
12.8933748 44.1338487	2011-02-01 07:09:26	331482.15 4888897.04	5C/1_NISKIN-I_BOTTOM
12.8931907 44.1338165	2011-02-01 07:10:50	331467.33 4888893.84	5C/1_NISKIN-I_ONBOARD
12.8923901 44.1336119	2011-02-01 07:19:26	331402.71 4888872.76	5C/1_SW104-I_ATSEA
12.8922280 44.1335679	2011-02-01 07:20:59	331389.61 4888868.20	5C/1 SW104-I BOTTOM
12.8922254 44.1334548	2011-02-01 07:22:26	331389.08 4888855.64	5C/1 SW104-LONBOARD
12.8927761 44.1330898	2011-02-01 08:04:04	331432.10 4888813.97	5C/1 GRAB-I ONBOARD
12 8903083 44 1343547	2011-02-01 15:53:00	331238 29 4888959 53	5C/1 BC RECOVERY
12.8905037 44 1342532	2011-02-01 15:55:57	331253 63 4888947 86	5C/1 BC ONBOARD
12.8926667 44 1335000	2011-02-05 11:14:44	331424 51 4888859 76	5C/1-II CTD-73 ATSFA SW104-V
12.8920007 44.1335000	2011-02-05 11:14:44	331208 00 4888003 73	5C/1 II PELEASE
12.8910855 44.1558007	2011-02-00 03:08:00	331298.90 4688903.75	5C/1 II CTD 78 ATSEA
12.8928555 44.1525555	2011-02-00 12.09.31	221216 12 48880129.85	5C/1 H DC DECOVEDY
12.0912992 44.1550555	2011-02-00 14:10:21	331310.13 4888901.83	SC/I-II_DC_RECOVER I
13.080057944.0055174	2011-02-02 06:25:44	340304.30 4874203.77	8A_BC_RELEASE TRUE
13.0861658 44.0055174	2011-02-02 06:26:07	346573.23 4874266.18	8A_BC_KELEASE_IKUE
13.0882463 44.0035562	2011-02-02 06:59:04	346734.97 4874044.48	8A_NISKIN_AISEA
13.0882573 44.0036025	2011-02-02 07:00:39	346735.97 4874049.60	8A_NISKIN_BOTTOM
13.0882613 44.0035941	2011-02-02 07:01:58	346736.27 4874048.66	8A_NISKIN_ONBOARD
13.0875674 44.0036390	2011-02-02 07:11:49	346680.75 4874054.94	8A_SW104-I_BOTTOM
13.0880318 44.0037554	2011-02-02 07:48:08	346718.28 4874067.00	8A_SW104-II_BOTTOM
13.0885030 44.0048437	2011-02-02 08:49:34	346758.86 4874187.01	8A_GRAB-I_BOTTOM
13.0877655 44.0042298	2011-02-02 09:13:23	346698.16 4874120.19	8A_SW
13.0877608 44.0041750	2011-02-02 09:15:06	346697.64 4874114.11	8A_SW
13.0876600 44.0048432	2011-02-02 09:36:45	346691.28 4874188.52	8A_SW104-IV_BOTTOM
13.0874136 44.0040158	2011-02-02 09:51:17	346669.39 4874097.07	8A_HYDROLAB_ATSEA
13.0882925 44.0039144	2011-02-02 10:00:07	346739.59 4874084.18	8A_HYDROLAB_BOTTOM
13.0882340 44.0039257	2011-02-02 10:00:32	346734.93 4874085.54	8A_HYDROLAB_ONBOARD
13.0968333 44.0073333	2011-02-02 16:11:59	347433.08 4874448.08	8A_CTD-38_ATSEA
13.0879401 44.0038738	2011-02-06 02:49:00	346711.24 4874080.32	8A-I_SW104-V_TRUE_BOTTOM
13.0878513 44.0038286	2011-02-06 02:49:05	346704.00 4874075.47	8A-I_SW104-V_BOTTOM
13.0878492 44.0038092	2011-02-06 02:52:04	346703.78 4874073.32	8A_sw104_bis_onboard
13.0876667 44.0035000	2011-02-06 03:02:08	346688.35 4874039.31	8A_CTD-77_ATSEA_SW104-V
12.6907994 44.1216425	2011-02-04 06:30:33	315238.96 4887976.32	3Acbent
12.6907590 44.1216385	2011-02-04 06:32:18	315235.71 4887975.96	3A_BC_RELEASE
12.6927467 44.1199583	2011-02-04 07:10:02	315389.52.4887784.88	3A
12.6927361 44.1199687	2011-02-04 07:10:28	315388.70 4887786.05	3A
12 6927486 44 1200318	2011-02-04 07:11:44	315389 90 4887793 04	3A
12 6931514 44 1202216	2011-02-04 07:35:11	315422 72 4887813 21	3A
12 6931296 44 1202063	2011-02-04 07:35:42	315420.93.4887811.56	3A SW104 BOTTOM
12.6931290 44.1202003	2011-02-04-07:35:42	315/21 71 /887817 15	34
12.6932239 44 1203440	2011-02-04 07:50:40	315/28 00 /887826 65	3A CTD65
12.6930000 44 1203333	2011-02-04 07:53:16	315/10 96 /887825 96	3A CTD 65 ATSEA
12.0930000 44.1203333	2011-02-04 07:53:10	315416.08 4887810.23	3A CTD65 BOTTOM
12.0930807 44.1201955	2011-02-04 07.54.29	215410.67 4887816.25	24 CTD65
12.0931123 44.1202404	2011-02-04 07:55:09	215/10 5/ 400/010.00	24 DENNIA polo
12.0951150 44.12018/2	2011-02-04 08:00:49	313419.34 488/809.48	2ADENNIA for de
12.6931198 44.1201987	2011-02-04 08:01:04	515420.12 488/810.74	SABENNA_IONdO
12.6932349 44.1203296	2011-02-04 08:03:40	315429.74 4887825.02	JABENNA_
12.6932246 44.1203101	2011-02-04 09:21:46	315428.85 4887822.88	3A_HYDROLAB
12.6931834 44.1202666	2011-02-04 09:52:46	315425.42 4887818.14	3AHYDROLAB_fondo
12.6931211 44.1202057	2011-02-04 09:53:26	315420.25 4887811.52	3AHYDROLAB_bordo
12.6907297 44.1216717	2011-02-04 15:45:08	315233.47 4887979.72	3A_BC_RECOVERY

SIG	Тор	Bot.	Liv.	Spess.	pH	Eh rif.	Eh Mis.	Eh	Т	Descrizione
				cm		mV	mV	mV	°C	
18C	0		-0.5		7.90	232	153.5	141.5	13.6	Overlaing water (OLW)
18C	0	0.5	0.25	0.5	7.50	232	66.8	54.8	16.2	Fango marroncino estremamente
										molle, con burrow, filamento e tur-
										ritella
18C	0.5	1	0.75	0.5	7.38	232	53.0	41	15.0	Fango marroncino estremamente
										molle, con venature nerastre
18C	1	1.5	1.25	0.5	7.29	232	-0.9	-12.9	16.5	Fango marroncino estremamente
										molle, con sottili venature nerastre
										e filamento di colore rosso
18C	1.5	2	1.75	0.5	7.34	232	-98.7	-110.7	16.4	Fango marroncino molto molle, con
100										sottili venature nerastre e burrow
18C	2	2.5	2.25	0.5	7.36	232	-146.0	-158	16.9	Fango grigio verde molto molle,
100	2.5		0.75	0.5	7.00		1 60 0	100	17.0	con burrows
18C	2.5	3	2.75	0.5	7.28	232	-168.0	-180	17.3	Fango grigio verde molto molle
18C	3	3.5	3.25	0.5	7.26	232	-211.0	-223	1/.1	Fango grigio verde molto molle,
190	25	4	275	0.5	7 22	222	220.0	222	17.4	Con venature nerastre e verme
180	3.5	4	3.75	0.5	1.23	232	-220.0	-232	17.4	Fango grigio verde molto molle,
190	4	5	15	1	7 77	222	204.0	216	171	Con venature herastre e burrow
180	4	5	4.5		7.27	232	-204.0	-210	17.1	Fango grigio scuro molto molte
100	5	0	5.5	1	1.24	232	-194.9	-200.9	17.4	con burrow
180	6	7	65	1	7.26	232	-218.0	-230	17.8	Fango grigio scuro molto molle
100		/	0.5	1	1.20	252	210.0	230	17.0	con chiazza marroncina
18C	7	8	75	1	7 29	232	-198 5	-210.5	17.6	Fango grigio scuro molto molle
100		Ŭ	1.5	1	1.29	232	170.5	210.5	17.0	con chiazze marroncine
18C	8	10	9	2	7.28	232	-219.0	-231	18.0	Fango grigio scuro molto molle.
	-		-							con chiazze marroncine
18C	10	12	11	2	7.25	232	-220.0	-232	17.7	Fango grigio scuro molto molle,
										con chiazza marroncina e filamenti
18C	12	14	13	2	7.31	232	-229.0	-241	17.9	Fango grigio scuro molto molle,
										con chiazza marroncina, filamento
										e burrows
18C	14	16	15	2	7.26	232	-231.0	-243	18.9	Fango grigio scuro molto molle,
										con chiazze marroncine e burrow
18C	16	19	17.5	3	7.33	232	-281.0	-293	18.1	Fango grigio scuro molto molle,
										con chiazze marroncine e grosso
100	1.0								10.0	lungo filamento
18C	19	22	20.5	3	7.38	232	-256.0	-268	18.8	Fango grigio scuro molle, con chi-
										azze marroncine, chiazza nerastra e
190	22	25	22.5	2	7 11	222	272.0	205	107	Durrows
100	22	23	23.3	5	/.41	232	-275.0	-205	10.7	mollo con chiazza marrongino chi
										azza porestra turritalla o piccola
										valva
180	25	28	26.5	3	7 46	232	-319.0	-331	18 5	Fango grigio scuro mediamente
150	25	20	20.5		1.40		517.0	551	10.5	molle, con chiazza marroncina chi-
										azza nerastra, turritella e burrows
18C	28	32	30	4	7.46	232	-346.0	-358	19.0	Fango grigio scuro mediamente
										molle, con chiazze marroncine, chi-
										azze nerastre, filamenti e burrows
1				P	1				1	1

Table 7: Estrusione e descrizione Carota 18C.

18C	32	36	34	4	7.47	232	-298.0	-310	19.0	Fango grigio nerastro molle, local- mente molto molle, con chiazze marroncine, burrow, bioclasto e fil- amento
18C	36	40	38	4	7.48	232	-283.0	-295	18.7	Fango grigio nerastro molle, local- mente molto molle, con chiazze marroncine, burrows, bioclasti e fil- amenti
18C	40	44	42	4	7.47	232	-272.0	-284	19.1	Fango grigio nerastro molle, local- mente piu' molle, con burrows, fila- mento, turritella, bioclasto e piccola valva
18C	44	48	46	4	7.48	232	-262.0	-274	19.7	Fango grigio nerastro molle, local- mente piu' molle, con chiazze mar- roncine, turritella e filamenti
18C	48	52	50	4	7.45	232	-217.0	-229	19.9	Fango grigio scuro molle, local- mente piu' molle, con venature nere, chiazza marroncina, gas-
18C	52	56	54	4	7.37	232	-194.5	-206.5	20.4	teropode e turritella Fango grigio scuro molle, local- mente piu' molle, con venature nerastre e chiazza marroncina

SIG	Тор	Bot.	Liv.	Spess.	pН	Eh rif.	Eh Mis.	Eh	Т	Descrizione
				cm		mV	mV	mV	°C	
3A	0		-0.5		8.06	235	58.1	43.1	12.3	Overlaing water (OLW)
3A	0	0.5	0.25	0.5	7.55	235	34.7	19.7	14.3	Fango marroncino verdognolo con
										sabbia, estremamente molle (quasi
2.4	0.5	1	0.75	0.5	7 42	025	10.0	4.4	127	privo di consistenza), con frustoli
3A	0.5	1	0.75	0.5	1.42	235	10.6	-4.4	13.7	Fango marroncino verdognolo con
										frustoli
34	1	15	1 25	0.5	7 28	235	-15.1	-60.4	14.5	Fango marroncino verdognolo con
511	1	1.5	1.25	0.5	1.20	233	тт	00.4	14.5	sabbia estremamente molle
3A	1.5	2	1.75	0.5	7.33	235	-114.3	-129.3	15.4	Fango grigio verde estremamente
										molle, con probabile presenza di
										sabbia e frustoli
3A	2	2.5	2.25	0.5	7.32	235	-124.7	-139.7	16.3	Fango grigio verde molto molle,
										con probabile presenza di sabbia
3A	2.5	3	2.75	0.5	7.39	235	-126	-141	15.9	Fango grigio verde molto molle,
										con venature nerastre e probabile
										presenza di sabbia
3A	3	3.5	3.25	0.5	7.39	235	-128.3	-143.3	15.9	Fango grigio verde molto molle,
										con probabile presenza di sabbia,
3.4	35	1	3 75	0.5	7 37	235	133.7	1487	16.6	Con venature nerastre e filamento
JA	5.5	+	5.75	0.5	1.57	233	-155.7	-140.7	10.0	con probabile presenza di sabbia
3A	4	5	45	1	74	235	-140 7	-1557	17	Fango grigio nerastro molle con
011				-			1.017	10017		probabile presenza di sabbia e bio-
										clasto
3A	5	6	5.5	1	7.42	235	-153.4	-168.4	16.2	Fango grigio scuro-nerastro molle,
										con verme
3A	6	7	6.5	1	7.46	235	-136.1	-151.1	16.5	Fango grigio scuro-nerastro media-
										mente molle
3A	7	8	7.5	1	7.51	235	-141.8	-156.8	18.3	Fango grigio scuro-nerastro poco
2.4	0	10			7.6	025	107.6	142.6	175	molle, con valve, bioclasti e vermi
ЗA	8	10	9	2	7.0	235	-127.0	-142.0	17.5	Fango grigio scuro-nerastro poco
34	10	12	11	2	7 57	235	-119.9	-134.9	174	Fango grigio scuro poco molle, con
511	10	12	11	2	1.51	233	11).)	134.7	1/.7	venature nerastre, frustoli
3A	12	14	13	2	7.48	235	-144.1	-159.1	17.1	Fango grigio scuro poco molle, con
										venature nerastre
3A	14	16	15	2	7.41	235	-121.9	-136.9	19.4	Fango grigio scuro poco molle, con
										venature nerastre
3A	16	19	17.5	3	7.45	235	-126.4	-141.4	18.3	Fango grigio scuro poco molle, con
										chiazza nerastra, frustolo e bioclasti
3A	19	22	20.5	3	7.4	235	-133.2	-148.2	18.2	Fango grigio scuro poco molle, con
										chiazza nerastra, bioclasti e tur-
										hield (probabile presenza di sab-
31	22	25	225	3	7 76	235	-128 7	-1/3 7	10.3	Eango grigio scuro poco molle, con
JA		23	25.5		/.20	255	-120.7	-1-13.7	17.5	venature nerastre e bioclasti (prob-
										abile presenza di sabbia)
3A	25	28	26.5	3	7.22	235	-129.5	-144.5	19.5	Fango grigio verde scuro poco
										molle, con rare venature nerastre

Table 8: Estrusione e descrizione Carota 3A.

3A	28	32	30	4	7.22	235	-131.3	-146.3	19.7	Fango grigio verde scuro poco molle, con rare e sottili venature perastre (probabile presenza di sab-
		0.0				225	100	1.41	20.1	bia)
3A	32	36	34	4	7.21	235	-126	-141	20.1	Fango grigio verde scuro poco molle, con sottili e rare venature
										nerastre e minuti bioclasti (proba-
34	36	40	38	4	7 23	235	-114.2	-129.2	20.6	Fango grigio verde scuro duro, con
5/1	50		50		1.23	255	111.2	129.2	20.0	sottili venature nerastre e rari e
										minuti bioclasti (probabile presenza
										di sabbia)

SIG	Тор	Bot.	Liv.	Spess.	pН	Eh rif.	Eh Mis.	Eh	Т	Descrizione
				cm		mV	mV	mV	°C	
8A	0		-0.5		7.97	229	135	126.0	15.4	Overlaing water (OLW)
8A	0	0.5	0.25	0.5	7.36	229	93.1	84.1	15.7	Fango (sabbioso/siltoso) marron-
										cino verdognolo estremamente
										molle
8A	0.5	1	0.75	0.5	7.18	229	81.9	72.9	16.2	Fango (sabbioso/siltoso) marron-
										cino verdognolo estremamente
										molle, con venature nerastre
8A	1	1.5	1.25	0.5	7.18	229	46.8	37.8	16.2	Fango (sabbioso/siltoso) marron-
										cino verdognolo estremamente
0.4	1.5		1.75	0.5	7 10	220	22.0	22.0	175	molle, con venature nerastre
8A	1.5	2	1.75	0.5	/.18	229	32.8	23.8	17.5	Fango (sabbioso/siltoso) marron-
										cino verdognolo estremamente
81	2	25	2.25	0.5	7 21	220	38 7	20.7	17.5	Fango (sabbioso/siltoso) marron
OA	2	2.5	2.23	0.5	/.21	229	30.7	29.1	17.5	cino verdognolo estremamente
										molle con rare e sottili venature
										nerastre
8A	2.5	3	2.75	0.5	7.23	229	20.5	11.5	16.1	Fango (sabbioso/siltoso) marron-
										cino verdognolo estremamente
										molle, con sottili venature nerastre
8A	3	3.5	3.25	0.5	7.17	229	10.4	1.4	17.2	Fango (sabbioso/siltoso) marron-
										cino verdognolo molto molle, con
										venature nerastre e burrow
8A	3.5	4	3.75	0.5	7.32	229	18.2	9.2	17.2	Fango (sabbioso/siltoso) grigio
										verde molto molle, con rare e
										sottili venature nerastre e chiazze
										marroncine
8A	4	5	4.5	1	7.28	229	39	30	17.1	Fango grigio verde molto molle,
										con venature nerastre e chiazze
0.4	-		EE		7 29	220	21.2	10.0	16.0	
8A	5	6	5.5	1	7.28	229	21.3	12.3	16.8	Fango grigio verde molto molle,
										con soum venature nerastre e chi-
81	6	7	6.5	1	7.25	220	16.8	78	173	Eango grigio verde molto molle
OA	0	/	0.5	1	1.25	229	10.0	7.0	17.5	con chiazze marroncine e rare e sot-
										tili venature nerastre
8A	7	8	75	1	7.26	229	41	-49	16.9	Fango grigio verde molto molle
011								,	1015	con chiazze marroncine e rare e sot-
										tili venature nerastre
8A	8	10	9	2	7.28	229	25.6	16.6	17.5	Fango grigio verde scuro molle, con
										chiazze marroncine, rare e sottili
										venature nerastre e burrows
8A	10	12	11	2	7.30	229	23.3	14.3	17.6	Fango grigio verde scuro molle, con
ľ.										venature nerastre, chiazza nerastra e
										rari bioclasti
8A	12	14	13	2	7.30	229	33.6	24.6	18.3	Fango grigio scuro mediamente
										molle, con chiazze marroncine piu'
			10						4	molli e minuti bioclasti
8A	14	16	15	2	7.37	229	20	11	17.9	Fango grigio scuro mediamente
				/						mone, con venature nerastre, rari e
										minuti diociasti, turritella

Table 9: Estrusione e descrizione Carota 8A.

8A	16	19	17.5	3	7.43	229	21.9	12.9	18.2	Fango grigio scuro mediamente molle, con venature nerastre, rari e minuti bioglasti frustalo
8A	19	22	20.5	3	7.41	229	25.7	16.7	18.8	Fango grigio scuro mediamente molle, con venature nerastre, rari e
8A	22	25	23.5	3	7.47	229	5.4	-3.6	18.7	Fango grigio scuro mediamente molle, con venature nerastre
8A	25	28	26.5	3	7.45	229	-84.3	-93.3	19.3	Fango grigio scuro mediamente molle e localmente piu' molle, con
8A	28	32	30	4	7.44	229	-95	-104	20	venature nerastre e burrow Fango grigio scuro mediamente molle, con venature nerastre e frus- tolo
8A	32	36	34	4	7.44	229	-76.1	-85.1	20.5	Fango grigio scuro mediamente molle, con venature nerastre
8A	36	40	38	4	7.36	229	-67.9	-76.9	20.4	Fango grigio scuro mediamente molle, con venature nerastre
8A	40	44	42	4	7.31	229	-101.4	-110.4	21.9	Fango grigio scuro mediamente molle, con venature nerastre e tur- ritella
8A	44	48	46	4	7.30	229	-102.3	-111.3	21.5	Fango grigio scuro mediamente molle, con rare venature nerastre e
8A	48	52	50	4	7.28	229	-102.9	-111.9	21.8	Fango grigio scuro mediamente molle, con rare venature nerastre e rari e minuti bioclasti

	SIG	Тор	Bot.	Liv.	Spess.	pН	Eh rif.	Eh Mis.	Eh	Т	Descrizione
					cm		mV	mV	mV	°C	
	2E	0	0	-0.5		7.72	239	59.3	40.3	13.7	Overlaing water (OLW)
	2E	0	0.5	0.25	0.5	7.31	239	88.2	69.2	13.9	Fango grigio verde estremamente
											molle, con bioclasto e burrow
	2E	0.5	1	0.75	0.5	7.22	239	-51.5	-70.5	14.1	Fango grigio verde estremamente
											molle, con venature nerastre e bi-
											valve
	2E	1	1.5	1.25	0.5	7.03	239	-114.1	-133.1	14.3	Fango grigio verde estremamente
											molle, con venature nerastre, bur-
	25	15	2	1 75	0.5	7	220	140.1	169.1	145	row e bioclasti
	ZE	1.5	2	1.75	0.5	'	239	-149.1	-108.1	14.5	Fango grigio verde estremamente
	2E	2	25	2.25	0.5	7.02	230	150.4	160.4	15 /	Fango grigio vorde estrememente
		2	2.5	2.23	0.5	7.02	239	-150.4	-109.4	13.4	molle con venature nerastre e bur-
											row
	2E	2.5	3	2.75	0.5	7.03	239	-136.8	-155.8	15.5	Fango grigio verde estremamente
		2.0	5	2.75	0.0	1.05	209	150.0	155.0	10.0	molle, con venature nerastre e tur-
											ritella
	2E	3	3.5	3.25	0.5	7.04	239	-166.6	-185.6	15.2	Fango grigio verde estremamente
											molle, con venature nerastre
	2E	3.5	4	3.75	0.5	7.06	239	-202	-221	16.2	Fango grigio verde molto molle,
											con venature nerastre e chiazza
											marroncina
	2E	4	5	4.5	1	7.08	239	-140.1	-159.1	15.4	Fango grigio verde molto molle, lo-
											calmente piu' molle, con venature
		_									nerastre e chiazza marroncina
	2E	5	6	5.5	1	7.06	239	-167.4	-186.4	16.1	Fango grigio verde molto molle, lo-
											calmente più molle, con venature
	20	C	7	65	1	7 1	220	200	220	16.2	nerastre
	ZE	0	/	0.5	1	/.1	239	-209	-228	10.5	fango grigio molto molle, con sol-
											valva
	2F	7	8	75	1	7.03	239	-180	-199	16	Fango grigio molto molle, con ve-
	212	<i>'</i>	U	1.5		1.05	237	100	177	10	nature nerastre
	2E	8	10	9	2	7.05	239	-220	-239	16.3	Fango grigio molto molle, local-
		,									mente piu' molle, con venature
											nerastre, chiazza marroncina e bio-
											clasti
	2E	10	12	11	2	7.11	239	-232	-251	16.4	Fango grigio molto molle, local-
											mente piu' molle, con venature
											nerastre, chiazza marroncina, chi-
											azza nerastra e burrows
	2E	12	14	13	2	7.09	239	-287	-306	15.9	Fango grigio molto molle, local-
											mente piu' molle, con venature
		14	10	1.7	2	C 00	220	1547	172 7	16.0	nerastre e chiazza marroncina
	ZE	14	16	15	2	6.98	239	-154.7	-1/3./	16.8	Fango grigio molto molle, local-
											nente plu molle, con venature
	2F	16	19	175	3	7.05	230	-1617	-180.7	17 5	Fango grigio molto molte local
		10	1)	11.5	3	,.05	237	101./	100.7	11.5	mente piu' molle con venature
											nerastre e chiazza marroncina
I	I	l			r I			I	I I	l	I

Table 10: Estrusione e descrizione Carota 2E.

2E	19	22	20.5	3	7.07	239	-135.6	-154.6	18.5	Fango grigio molto molle, local- mente piu' molle, con venature nerastre, chiazza marroncina, bur- rows, bivalve e bioclasti da minuti a grossolani
2E	22	25	23.5	3	7.03	239	-190.4	-209.4	18	Fango grigio molto molle, local- mente piu' molle, con venature nerastre, chiazza marroncina, tur- ritella e bioclasti
2E	25	28	26.5	3	6.97	239	-160	-179	18.5	Fango grigio molle, con sottili ve- nature nerastre, bioclasti, turritelle e gasteropode
2E	28	32	30	4	7.04	239	-166.7	-185.7	18.7	Fango grigio molle, localmente piu' molle, con rare venature nerastre, bioclasti e turritella
2E	32	36	34	4	7	239	-161.7	-180.7	18.9	Fango grigio poco molle, con bio- cenosi di turritelle
2E	36	40	38	4	7.01	239	-146.8	-165.8	19.5	Fango grigio poco molle, con tur- ritelle
2E	40	44	42	4	7.11	239	-130.9	-149.9	19.6	Fango grigio poco molle, con rare venature nerastre, bioclasti, bio- cenosi di turritelle e filamento
2E	44	48	46	4	7.12	239	-137.7	-156.7	19.5	Fango grigio poco molle, local- mente piu' molle, con rare venature
2E	48	52	50	4	7.07	239	-134.7	-153.7	19.9	Fango grigio molle, con rare vena- ture nerastre, filamento e bioclasti

SIG	Тор	Bot.	Liv.	Spess.	pH	Eh rif.	Eh Mis.	Eh	Т	Descrizione
				cm		mV	mV	mV	°C	
5C/1	0		-0.5		7.75	239	264	245.0	18	Overlaing water (OLW)
5C/1	0	0.5	0.25	0.5	7.35	239	267	248.0	19.4	Fango marroncino estremamente
										molle, presenza di un piccolo
										paguro
5C/1	0.5	1	0.75	0.5	7.04	239	268	249.0	19.3	Fango marroncino verdognolo es-
										tremamente molle
5C/1	1	1.5	1.25	0.5	7.13	239	237	218.0	18.5	Fango marroncino verdognolo es-
										tremamente molle
5C/1	1.5	2	1.75	0.5	7.13	239	188.4	169.4	18.8	Fango grigio verde estremamente
,										molle, con chiazze marroncine
5C/1	2	2.5	2.25	0.5	7.16	239	170.6	151.6	18.6	Fango grigio verde, da estrema-
/										mente molle a molto molle, con
										venature nerastre e chiazze mar-
										roncine
5C/1	2.5	3	2.75	0.5	7.1	239	144	125.0	19.7	Fango grigio verde, da estrema-
00/1		0			/11					mente molle a molto molle, con sot-
										tili venature nerastre e chiazze mar-
										roncine
5C/1	3	35	3 25	0.5	7 23	239	107 5	88.5	19.4	Fango grigio verde molto molle lo-
50/1		5.5	5.25	0.5	1.25	237	107.5	00.5	17.1	calmente niu' molle con venature
										nerastre
5C/1	35	4	3 75	0.5	7.25	239	98.4	79.4	19	Fango grigio verde molto molle
50/1	5.5	-	5.75	0.5	1.25	237	70.4	17.4	17	con sottili venature perastre
5C/1	1	5	15	1	7 27	230	71	52.0	10	Eango grigio verde molto molle
50/1	-	5	ч.5	1	1.21	237	/1	52.0	17	con venature perastre e bioclasto
5C/1	5	6	5 5	1	7 27	220	61	42.0	10.2	Eango grigio mollo, con chiazzo a
JC/1	5	0	5.5	1	1.21	239	01	42.0	19.2	vonsturo porestro burrows o file
										mento
5C/1	6	7	65	1	7 28	220	74.6	55.6	10.4	Fango grigio mollo, con vonaturo
JC/1	0		0.5	1	1.20	239	74.0	55.0	19.4	norestro o chiazzo marrongino
5C/1	7	0	75	1	7 20	220	60.1	50.1	10.4	Fango grigio souro mollo, con vono
JC/1	/	0	1.5	1	1.29	239	09.1	50.1	19.4	ture perastre e chiazze marroncine
5C/1	8	10	0	2	73	230	65.5	16.5	187	Eango grigio scuro molle, con vena
JC/1	0	10	,	2	1.5	239	05.5	40.5	10.7	tura parastra, chiazza marronaina a
										burrow
5C/1	10	12	11	2	7 34	230	125.5	106.5	10.2	Eango grigio scuro molle, con vena
JC/1	10	12	11	2	7.54	239	125.5	100.5	19.2	ture perastre e bioclasti
5C/1	12	14	13	2	7 36	230	02.8	73.8	10.5	Eango grigio scuro molle, con vena
JC/1	12	14	15	2	1.50	239	92.0	15.0	19.5	ture perastre e bioclasti
5C/1	14	16	15	2	7 34	230	87.5	68 5	10.4	Eango grigio scuro mediamente
JC/1	14	10	15	2	1.54	239	07.5	00.5	19.4	molle con venature perastre e bio
										clasti
50/1	16	10	17.5	2	7.24	220	102.2	812	10.7	Eango grigio souro modiomonto
JC/1	10	19	17.5	5	1.54	239	105.2	04.2	19.7	mollo con vonsturo norestro o bio
										clasti
50/1	10	22	20.5	2	7 22	220	966	676	20	Eanao amigio souro modiomonto
JC/1	19		20.3	5	1.55	239	00.0	07.0	20	mollo con vonsturo nerestra
										clasti a turritalla
5C/1	22	25	22.5	3	7 20	220	80	61.0	20	Fongo grigio souro modiomento
JC/1		25	23.5	5	1.29	237	00	01.0	20	malla aon vanatura narastra
1				1				1	1	mone, con venature nerastre

Table 11: Estrusione e descrizione Carota 5C_1.

5C/1	25	28	26.5	3	7.31	239	60.8	41.8	19.9	Fango grigio scuro mediamente molle, localmente piu' molle, con
5C/1	28	32	30	4	7.29	239	50.3	31.3	20.3	bioclasti Fango grigio scuro mediamente molle, con sottili e rare venature
5C/1	32	36	34	4	7.23	239	34.2	15.2	21	nerastre, filamento e turritella Fango grigio scuro mediamente molle, con rare e sottili venature
5C/1	36	40	38	4	7.25	239	14.7	-4.3	20.9	nerastre Fango grigio scuro mediamente molle, con venature nerastre
5C/1	40	44	42	4	7.27	239	13.7	-5.3	20.8	Fango grigio scuro mediamente molle, con rare venature nerastre
5C/1	44	48	46	4	7.31	239	14.3	-4.7	20.4	Fango grigio scuro mediamente molle, con venature nerastre e pic-
										cole chiazze marroncine

SIG	Тор	Bot.	Liv.	Spess.	pН	Eh rif.	Eh Mis.	Eh	Т	Descrizione
				cm		mV	mV	mV	°C	
8A/1	0		-0.5		8.13	224	-53.9	-57.9	13.9	Overlaing water (OLW)
8A/1	0	0.5	0.25	0.5	7.61	224	-65.7	-69.7	16.6	Fango (sabbioso/siltoso) marron-
										cino verdognolo estremamente
										molle (quasi privo di consistenza)
8A/1	0.5	1	0.75	0.5	7.33	224	-87.6	-91.6	17.7	Fango (sabbioso/siltoso) grigio
										verde estremamente molle, con
										velature marroncine
8A/1	1	1.5	1.25	0.5	7.37	224	-87.9	-91.9	16.4	Fango grigio verde molto molle,
										con venature nerastre e velature
										marroncine
8A/1	1.5	2	1.75	0.5	7.23	224	-79	-83	17.7	Fango grigio verde molto molle
8A/1	2	2.5	2.25	0.5	7.34	224	-127.5	-131.5	18	Fango grigio verde molto molle,
										con venature nerastre
8A/1	2.5	3	2.75	0.5	7.39	224	-124.3	-128.3	17.2	Fango grigio verde molto molle,
										con turritella
8A/1	3	3.5	3.25	0.5	7.42	224	-137.4	-141.4	18.6	Fango grigio verde molto molle
8A/1	3.5	4	3.75	0.5	7.43	224	-138.7	-142.7	18.7	Fango grigio verde scuro molle
8A/1	4	5	4.5	1	7.41	224	-142.1	-146.1	17.2	Fango grigio verde scuro molle
8A/1	5	6	5.5	1	7.46	224	-133.4	-137.4	18.5	Fango grigio verde scuro media-
										mente molle
8A/1	6	7	6.5	1	7.45	224	-148.2	-152.2	18.4	Fango grigio verde scuro media-
										mente molle, con venature nerastre
										e turritella
8A/1	7	8	7.5	1	7.45	224	-158.1	-162.1	18.7	Fango grigio verde scuro media-
										mente molle, con venature nerastre
8A/1	8	10	9	2	7.39	224	-146.8	-150.8	18.1	Fango grigio verde scuro media-
										mente molle, con venature nerastre

Table 12: Estrusione e descrizione Carota 8A_1.

SIG	Тор	Bot.	Liv.	Spess.	pН	Eh rif.	Eh Mis.	Eh	Т	Descrizione
				cm		mV	mV	mV	°C	
2E/2	0	0	-0.5		8.08	229	63.3	54.3	13.5	Overlaing water (OLW)
2E/2	0	0.5	0.25	0.5	7.76	229	78	69	15.8	Fango (silt?) marroncino verdog-
										nolo estremamente molle, con sot-
										tili venature nerastre
2E/2	0.5	1	0.75	0.5	7.37	229	52.7	43.7	16.2	Fango (silt?) marroncino ver-
										dognolo estremamente molle, con
										sottili venature nerastre e chiazza
										nerastra
2E/2	1	1.5	1.25	0.5	7.28	229	-22.7	-31.7	16.6	Fango (silt?) grigio verde molto
										molle, con chiazze nerastre
2E/2	1.5	2	1.75	0.5	7.16	229	-60.2	-69.2	19.1	Fango grigio verde molto molle,
										con chiazze nerastre
2E/2	2	2.5	2.25	0.5	7.17	229	-34.2	-43.2	19.1	Fango grigio verde molto molle
2E/2	2.5	3	2.75	0.5	7.17	229	-40.9	-49.9	18.2	Fango grigio verde molto molle
2E/2	3	3.5	3.25	0.5	7.19	229	-50.8	-59.8	18.6	Fango grigio verde molto molle
2E/2	3.5	4	3.75	0.5	7.23	229	-50	-59	18.4	Fango grigio verde molto molle
2E/2	4	5	4.5	1	7.23	229	-55.2	-64.2	17.8	Fango grigio verde molto molle,
										con rare e sottili venature nerastre
2E/2	5	6	5.5	1	7.2	229	-85.8	-94.8	17.6	Fango grigio scuro molto molle,
										con chiazza nerastra
2E/2	6	7	6.5	1	7.24	229	-94.7	-103.7	17.9	Fango grigio scuro molto molle,
	_	_								con venature nerastre
2E/2	7	8	7.5	1	7.21	229	-109.2	-118.2	18.5	Fango grigio scuro molle
2E/2	8	10	9	2	7.22	229	-128.4	-137.4	17.7	Fango grigio scuro molle, con sot-
										tili venature nerastre

Table 13: Estrusione e descrizione Carota 2E_2.

SIG	Тор	Bot.	Liv.	Spess.	pH	Eh rif.	Eh Mis.	Eh	Т	Descrizione
				cm		mV	mV	mV	°C	
5C/2	0		-0.5		7.95	240	205	185.0	14.3	Overlaing water (OLW)
5C/2	0	0.5	0.25	0.5	7.49	240	197	177.0	15.1	Fango marroncino verdognolo es-
										tremamente molle (quasi privo di
										consistenza)
5C/2	0.5	1	0.75	0.5	7.3	240	181.5	161.5	15.4	Fango marroncino verdognolo es-
500	1	1.5	1.25	0.5	7 20	240	02.5	72.5	15.0	tremamente molle
5C/2	1	1.5	1.25	0.5	/.38	240	92.5	12.5	15.9	Fango marroncino verdognolo es-
										nerastra
5C/2	15	2	1 75	0.5	7.26	240	134.6	114.6	163	Fango marroncino verdognolo es-
00/2	1.0	-	1170				10 110	11.110	10.0	tremamente molle, con chiazze
										nerastre
5C/2	2	2.5	2.25	0.5	7.24	240	-81.8	-101.8	16.7	Fango marroncino verdognolo, da
										estremamente molle a molto molle,
										con chiazze nerastre
5C/2	2.5	3	2.75	0.5	7.31	240	-87.9	-107.9	16.7	Fango marroncino verdognolo
									1.0	molto molle, con chiazze nerastre
5C/2	3	3.5	3.25	0.5	7.29	240	-111.7	-131.7	16.9	Fango marroncino verdognolo
500	25	4	275	0.5	7 20	240	107.2	127.2	17.2	molto molle, con chiazze nerastre
3C/2	5.5	4	5.75	0.5	1.29	240	-107.2	-127.2	17.5	molto molle, con chiazze perastre
5C/2	4	5	45	1	7 32	240	-120	-140.0	17.6	Fango grigio verde molto molle
50/2			1.5	1	1.52	210	120	110.0	17.0	con chiazze nerastre
5C/2	5	6	5.5	1	7.35	240	-125.6	-145.6	17.4	Fango grigio verde molto molle,
										con chiazze nerastre
5C/2	6	7	6.5	1	7.33	240	-127.5	-147.5	17.4	Fango grigio verde molto molle,
										con chiazze e venature nerastre
5C/2	7	8	7.5	1	7.33	240	-125.9	-145.9	17.3	Fango grigio verde scuro molle, con
500	0	10	0			240	122.2	152.2	100	chiazze e venature nerastre
5C/2	8	10	9	$\frac{2}{2}$	7.4	240	-133.3	-155.5	16.9	Fango grigio verde scuro molle
30/2	10	12	11	2	1.39	240	-155.5	-155.5	10.0	burrows e rari e minuti bioclasti
5C/2	12	14	13	2	7.36	240	-114.8	-134.8	17.4	Fango grigio verde scuro molle, con
00/2				7	1.00		11.110	10.110		chiazze nerastre e turritella
5C/2	14	16	15	2	7.39	240	-127.9	-147.9	17.4	Fango grigio verde scuro molle, con
										chiazze e venature nerastre e con
										rari e minuti bioclasti
5C/2	16	19	17.5	3	7.38	240	-108.6	-128.6	17.7	Fango grigio verde scuro molle, lo-
										calmente piu' molle, con chiazze e
										venature nerastre, turritelle e fila-
500	10	22	20.5	2	7 20	240	107.2	127.2	10.2	Engo grigio verde seuro mello lo
30/2	19	22	20.5	5	1.39	240	-107.5	-127.3	10.5	calmente niu' molle con venature
										nerastre e turritella
5C/2	22	25	23.5	3	7.27	240	-105.6	-125.6	18.5	Fango grigio verde scuro molle, con
										rare chiazze nerastre
5C/2	25	28	26.5	3	7.11	240	-82.1	-102.1	18.2	Fango grigio verde scuro molle,
										con sottili venature nerastre e rari e
					_			100.	10-	minuti bioclasti
5C/2	28	32	30	4	7.11	240	-80.4	-100.4	18.8	Fango grigio verde scuro molle, lo-
										caimente più molle, con rare vena-
										ture nerastre, mamento e turritella

Table 14: Estrusione e descrizione Carota 5C_2.

5C/2	32	36	34	4	7.09	240	-80.1	-100.1	19.4	Fango grigio verde molto molle,
										con rare e sottili venature nerastre
										e piccola chiazza ocracea
5C/2	36	40	38	4	7.15	240	-90.5	-110.5	19.6	Fango grigio verde scuro molto
										molle, con sottili venature nerastre,
										piccola chiazza ocracea e bioclasto
5C/2	40	44	42	4	7.3	240	-110.9	-130.9	19.4	Fango grigio verde scuro molle, lo-
										calmente piu' molle, con sottili ve-
										nature nerastre
5C/2	44	48	46	4	7.31	240	-124.8	-144.8	19.8	Fango grigio verde scuro molle,
										con chiazze nerastre, sottili vena-
										ture nerastre e piccola chiazza oc-
										racea

LON LAT	STAZ.	DATA-NMEA	DATA-UPLOAD	FILE
ddmm.xxx		UTC		FILE
1303.740 4413.510	CTD-01	2011-01-29T21:25:27	2011-00-29T21:25:52	Case3.hex
1259.970 4444.420	CTD02	2011-01-30T01:27:19	2011-00-30T01:27:52	CTD02.hex
1252.140 4444.500	CTD03	2011-01-30T02:19:36	2011-00-30T02:19:42	CTD03.hex
1246.060 4444.430	CTD04	2011-01-30T03:02:51	2011-00-30T03:02:58	CTD04.hex
1237.850 4444.220	CTD05	2011-01-30T04:01:06	2011-00-30T04:01:19	CTD05.hex
1230.400 4443.970	CTD06	2011-01-30T04:51:58	2011-00-30T04:52:10	CTD06.hex
1224.340 4443.890	CTD07	2011-01-30T05:34:00	2011-00-30T05:34:20	CTD07.hex
1227.160 4444.480	CTD08	2011-01-30T06:05:11	2011-00-30T06:05:28	CTD08.hex
1227.490 4444.610	CTD09	2011-01-30T16:23:41	2011-00-30T16:23:51	CTD09.hex
1234.280 4448.240	CTD10	2011-01-30T17:33:55	2011-00-30T17:34:08	CTD10.hex
1240.640 4446.600	CTD11	2011-01-30T18:22:59	2011-00-30T18:23:03	CTD11.hex
1236.830 4453.010	CTD12	2011-01-30T19:18:45	2011-00-30T19:19:15	CTD12.hex
1243.960 4453.040	CTD13	2011-01-30T20:06:55	2011-00-30T20:07:06	CTD13.hex
1248.910 4453.040	CTD14	2011-01-30T20:41:47	2011-00-30T20:42:17	CTD14.hex
1255.020 4453.060	CTD15	2011-01-30T21:19:43	2011-00-30T21:20:42	CTD15.hex
1300.320 4453.070	CTD16	2011-01-30T21:57:05	2011-00-30T21:57:19	CTD16.hex
1304.940 4453.120	CTD17	2011-01-30T22:27:13	2011-00-30T22:28:32	CTD17.hex
1253.530 4434.430	CTD18	2011-01-31T00:50:55	2011-00-31T00:51:52	CTD18.hex
1248.770 4434.330	CTD19	2011-01-31T01:25:00	2011-00-31T01:25:35	CTD19.hex
1240.710 4434.270	CTD20	2011-01-31T02:15:20	2011-00-31T02:15:54	CTD20.hex
1233.900 4434.320	CTD21	2011-01-31T02:56:35	2011-00-31T02:57:32	CTD21.hex
1227.170 4434.240	CTD22	2011-01-31T03:42:02	2011-00-31T03:42:06	CTD22.hex
1239.670 4419.070	CTD23	2011-01-31T05:57:06	2011-00-31T05:57:12	CTD23.hex
1239.650 4419.010	CTD24	2011-01-31T15:23:37	2011-00-31T15:24:13	CTD24.hex
1314.710 4359.630	CTD25	2011-01-31T20:21:51	2011-00-31T20:22:07	CTD25.hex
1232.880 4415.240	CTD26	2011-02-01T02:23:46	2011-00-01T02:23:49	CTD26.hex
1252.610 4406.500	CTD27	2011-02-01T05:01:16	2011-00-01T05:01:30	CTD27.hex
1253.550 4405.100	CTD28	2011-02-01T18:01:55	2011-00-01T18:01:59	CTD28.hex
1302.110 4410.990	CTD29	2011-02-01T19:21:03	2011-00-01T19:21:07	CTD29.hex
1303.780 4413.210	CTD30	2011-02-01T19:52:49	2011-00-01T19:53:00	CTD30.hex
1307.690 4414.730	CTD31	2011-02-01T21:22:57	2011-00-01T21:23:07	CTD31.hex
1256.910 4405.030	CTD32	2011-02-01T23:45:17	2011-00-01T23:45:32	CTD32.hex
1259.640 4400.900	CTD33	2011-02-02T03:03:24	2011-00-02103:03:28	CTD33.hex
1301.170 4402.030	CTD34	2011-02-02103:29:58	2011-00-02103:30:06	CTD34.hex
1302.550 4403.050	CTD35	2011-02-02103:58:31	2011-00-02103:58:36	CTD35.hex
1303.910 4404.110	CTD36	2011-02-02104:24:18	2011-00-02104:24:29	CTD36.hex
1305.570 4405.350	CID3/	2011-02-02104:51:26	2011-00-02104:51:31	CTD37.hex
1305.810 4400.440	CTD38	2011-02-02T16:11:46	2011-00-02T16:11:59	CTD38.hex
1255.740 4406.590	CTD39	2011-02-02117:57:28	2011-00-0211/:58:18	CTD39.hex
1253.520 4408.010	CTD40	2011-02-02118:29:55	2011-00-02118:30:31	CTD40.hex
1246.480 4414.020	CTD41 CTD42	2011-02-02119:42:16	2011-00-02119:43:21	CID41.hex
1236.030 4422.840	CTD42	2011-02-02121:43:09	2011-00-02121:44:05	CTD42.hex
1234.050 4434.590	CTD43	2011-02-03100:01:58	2011-00-03100:02:55	CTD43.hex
1230.540 4443.990	CTD44	2011-02-03102:01:28	2011-00-03102:02:21	CTD44.hex
1230./90.4453.010	CTD45	2011-02-03107:05:43	2011-00-03107:06:13	CTD45.hex
1230.190.4458.070	CTD40	2011-02-03109:19:35	2011-00-03109:20:24	CTD40.nex
1239.000 4458.100	C1D4/	2011-02-03110:01:01	2011-00-03110:01:58	CTD4/.nex
1245.050 4458.510	CTD48	2011-02-03111:11:33	2011-00-03111:12:21	CTD40.lleX
1249.090 4438.930	CTD49	2011-02-03112:07:23	2011-00-05112:08:14	CTD49.nex
1233.300 4439.720	CTD51	2011-02-03112:33:23	2011-00-05112:54:21	CTD50.nex
1302.700 4300.190	CTD51	2011-02-03115:36:29	2011-00-03115:36:49	CTD51.llex
1510.720 4500.780	CID52	2011-02-05115:05:25	2011-00-03113:00:55	CID32.nex

Table 15: Stazioni CTD CASE3 con R/V Urania.

1310.320 4453.440	CTD53	2011-02-03T16:17:01	2011-00-03T16:17:08	CTD53.hex
1305.370 4453.270	CTD54	2011-02-03T16:52:44	2011-00-03T16:53:54	CTD54.hex
1300.360 4453.020	CTD55	2011-02-03T17:35:41	2011-00-03T17:35:51	CTD55.hex
1254.960 4453.020	CTD56	2011-02-03T18:21:44	2011-00-03T18:22:38	CTD56.hex
1248.950 4453.030	CTD57	2011-02-03T19:08:25	2011-00-03T19:08:41	CTD57.hex
1243.970 4453.020	CTD58	2011-02-03T19:46:15	2011-00-03T19:46:37	CTD58.hex
1236.800 4453.000	CTD59	2011-02-03T21:02:34	2011-00-03T21:03:01	CTD59.hex
1234.320 4448.200	CTD60	2011-02-03T21:50:31	2011-00-03T21:50:43	CTD60.hex
1240.670 4446.610	CTD61	2011-02-03T22:37:23	2011-00-03T22:37:29	CTD61.hex
1246.130 4444.400	CTD62	2011-02-03T23:30:21	2011-00-03T23:30:30	CTD62.hex
1237.880 4444.220	CTD63	2011-02-04T00:24:15	2011-00-04T00:24:21	CTD63.hex
1230.410 4444.020	CTD64	2011-02-04T01:10:37	2011-00-04T01:11:07	CTD64.hex
1241.580 4407.220	CTD65	2011-02-04T07:52:12	2011-00-04T07:53:16	CTD65.hex
1254.350 4420.110	CTD66	2011-02-04T18:04:21	2011-00-04T18:04:44	CTD66.hex
1258.280 4418.210	CTD67	2011-02-04T18:46:19	2011-00-04T18:47:18	CTD67.hex
1247.070 4406.790	CTD68	2011-02-04T20:34:52	2011-00-04T20:36:11	CTD68.hex
1310.560 4404.970	CTD69	2011-02-04T23:36:27	2011-00-04T23:38:01	CTD69.hex
1314.070 4403.540	CTD70	2011-02-05T02:26:22	2011-00-05T02:27:23	CTD70.hex
1317.390 4401.880	CTD71	2011-02-05T03:07:53	2011-00-05T03:08:48	CTD71.hex
1234.360 4408.610	CTD72	2011-02-05T09:00:51	2011-00-05T09:01:07	CTD72.hex
1253.560 4408.010	CTD73	2011-02-05T11:14:16	2011-00-05T11:14:44	CTD73.hex
1239.680 4419.050	CTD74	2011-02-05T13:20:27	2011-00-05T13:22:08	CTD74.hex
1231.470 4426.510	CTD75	2011-02-05T14:55:30	2011-00-05T14:56:42	CTD75.hex
1302.770 4411.230	CTD76	2011-02-05T21:40:29	2011-00-05T21:40:44	CTD76.hex
1305.260 4400.210	CTD77	2011-02-06T03:00:28	2011-00-06T03:02:08	CTD77.hex
1253.570 4407.940	CTD78	2011-02-06T12:09:34	2011-00-06T12:09:51	CTD78.hex

Table 16: Diario delle operazioni .

DATA	OPERAZIONI
2011-01-29	Mobilitazione ad Ancona; Imbarco personale e mezzi
2011-01-29	Partenza 18:00,
2011-02-07	Smobilitazione. Fine campagna.